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Reflection is the ability of some entity to describe itself. In a logical context,
it is the ability of a logic to reason about itself. Reflection is, therefore, placed at
the core of meta-mathematics, making it an important part of formal reasoning;
where it revolves mainly around syntax and semantics — the main challenge is in
making the syntax of the logic become part of its semantic domain.

Given its importance, it is surprising that logical computer systems tend to
avoid the subject, or provide poor tools for reflective work. This is in sharp contrast
to the area of programming languages, where reflection is well researched and
used in a variety of ways where it plays an central role. One factor in making
reflection inaccessible in logical systems is the relative difficulty that is immediately
encountered when formalizing syntax: dealing with formal syntax means dealing
with structures that involve bindings, and in a logical context it seems natural
to use the same formal tools to describe syntax — often limiting the usability of
such formalizations to specific theories and toy examples. Gödel numbers are an
example for a reflective formalism that serves its purpose, yet is impractical as a
basis for syntactical reasoning in applied systems.

In programming languages, there is a simple yet elegant strategy for imple-
menting reflection: instead of making a system that describes itself, the system is
made available to itself. We name this direct reflection, where the representation of
language features via its semantics is actually part of the semantics itself — unlike
the usual practice in formal systems of employing indirect reflection. The advan-
tages of this approach is the fact that both the system and its reflected counterpart
are inherently identical, making for a lightweight implementation.

In this work we develop the formal background and the practical capabilities
of an applied system, namely Nuprl, that are needed to support direct reflection
of its own syntax. Achieving this is a major milestone on the road for a fully
reflected logical system. As we shall demonstrate, our results enable dealing with
syntactical meta-mathematical content.
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Chapter 1
Introduction
Reflection is the ability of some entity to describe itself. It is a deep idea in logic,
computer science, linguistics, philosophy, art, and more. Reflection has been a
source of philosophical discussions for ages, with the liar paradox and variations
(e.g., “This sentence is false.”) being the best known example — allegedly orig-
inated by the Greek philosopher Eubulides the Megarian in the fourth century
B.C.1, studied in the twelfth century under the name of “insolubles” or “insolu-
bilia” [68], etc. Reflection is also a very current topic in programming languages
— from using macros to enhance expressiveness [30], to using theorem provers
to reason about programming languages, recently becoming a renewed focus of
attention due to the PoplMark challenge [7].

In a logical context, reflection is the ability of a logic to reason about itself.
Reflection is, therefore, placed at the core of meta-mathematics, making it an
important part of formal reasoning; where it revolves mainly around syntax and
semantics — the main challenge is in making the syntax of the logic become part of
its semantic domain. For theorem provers, reflection is not only a way to formalize
meta-mathematical content, it can be used to shorten proofs, extend the system
with verified tactics, provide meta-proof tools, and reason about complexity [6,
47], as well as promoting reasoning about syntax which is necessary for formal
programming languages research. Indeed, within the Nuprl group at Cornell there
have been attempts at implementing reflection since the 1980s.

Given its importance, it is surprising that program verification systems [35]
tend to avoid the subject, or provide poor tools for reflective work. This is in sharp
contrast to the area of programming languages, where reflection is well researched
and used in a variety of ways where it plays an central role.

Verification systems are inherently close to programming languages: relation-
ships between the concepts of proof systems and programming languages are well
studied. It is therefore quite common to find ideas from one field inspiring advance-
ments in the other. One factor in making reflection inaccessible in logical systems
is the relative difficulty that is immediately encountered when formalizing syntax:
dealing with formal syntax means dealing with structures that involve bindings,
and in a logical context it seems natural to use the same formal tools to describe
syntax — often limiting the usability of such formalizations to specific theories
and toy examples. Gödel numbers are an example for a reflective formalism that
serves its purpose, yet is impractical as a basis for syntactical reasoning in applied
systems.

In programming languages, there is a simple yet elegant strategy for imple-
menting reflection: instead of making a system that describes itself, the system is
made available to itself. We name this direct reflection, where the representation

1It seems that the paradox by the Cretan philosopher Epimenides of Knossos
predates Eubulides, but was not originally intended as a paradox.
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of language features via its semantics is actually part of the semantics itself —
unlike the usual practice in formal systems of employing indirect reflection such
as Gödel numbers. The advantages of this approach is the fact that both the sys-
tem and its reflected counterpart are inherently identical, making for a lightweight
implementation.

In this work we will thoroughly discuss reflection approaches, focusing on direct
reflection as the superior solution for implementing reflection. This continues the
tradition of extending the synergy between the two fields: we will aim at achieving
a reflection strategy that is as elegant and as robust as the common approach in
programming languages. Based on this discussion, we will formalize and imple-
ment a syntactic reflection mechanism for a proof development system, namely
Nuprl, and demonstrate the practicality of our approach. The discussion will re-
volve around Nuprl as a known representative of theorem proving systems, yet the
general principles are applicable for similar applications.

The benefits of having a reflection mechanism was shown as an extremely useful
tool in numerous domains, not only programming languages, but other substrate
systems as well — operating systems, object systems, data bases etc. Theorem
provers in general, and Nuprl in specific, are substrate systems of yet another
kind, and as such, it will benefit as well from a reflection mechanism. In these
systems, reflection can, again, have several different meanings, from reflecting facts
about the language and the computations that make the system to reflecting the
logic itself, which makes it possible to perform meta-reasoning. The global goal
of our work will be providing a method for implementing syntactic reflection in
logical system — given that any form of logical reflection is preconditioned by the
ability to reflect syntax, our work will form a basis for future reflective extensions
of any kind. More specifically, this work is part of an overall effort to get a
practical reflection of syntax, computation and proof in Nuprl [16, 6]. Reflecting
syntax in a logical system entails writing proof rules that express that reflection,
i.e., establishing an inferential connection between the actual syntax used and the
meta-terms supposedly referring to it.

As we strive to import ideas from the world of programming language practice,
the discussion will be kept close the implementation level. Reflection combines the
implementation view with the theoretical view — where programming languages
lean to the former and logical systems to the latter. Breaking this pattern we
will draw ideas from actual implementation strategies, and use code snippets as an
initial discussion seed. This follows the basic intuition that such ideas are most use-
ful when they are implemented, leading to an “implementation as understanding”
principle which guides this work.

1.1 Reflection and Art

This work is written by a person who considers programming an art. Programmers
who hold this opinion often design code according to aesthetic considerations,
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where often there is some solution that feels like “The Right Thing” (sometimes
abbreviated as “TRT”). These programmers will then find great joy in observing
how such beautiful designs make for programs that almost write themselves.

The main approach that is used in this work originates in such a design. The
research was carried on based on the intuition that it is the right thing, even at
times where we thought that we will not be able to express certain meta-proofs
(Section 6.1). Later on, it turned out that good design did pay off.

For programmers, computer scientist, and logicians, such designs are apparent
not only consciously, but also on an aesthetic, almost sub-conscious level. Cer-
tain programs, algorithms, and proofs are viewed in a very similar fashion to good
pieces of art. In an attempt to demonstrate this, I have taken a minor in Cor-
nell’s Art department, and used photography to visually demonstrate deep ideas
from computer science and logic. These photographs are intended to impact the
viewer on both levels of aesthetics that were mentioned: at conscious level where
the puzzle element is obvious, and at a sub-conscious level where aesthetics dom-
inate. Six of these pictures appears on page 6 as a sample, all are connected to
various aspects of this work, e.g., syntax vs. semantics, language, different kinds
of reflection and self reference.

1.2 Accomplishments

This thesis will present a practical way to reflect syntax in the Nuprl theorem
prover. Several important concepts will be demonstrated:

• Direct reflection will be shown as an approach that brings similar wins for
reflecting theorem provers, as it does for programming languages.

• Using direct reflection is feasible with a logical system. As is the case
with programming language implementations (e.g., most Scheme implemen-
tations), this results in a light-weight reflection system which is easy to imple-
ment and extend. Furthermore, such an implementation benefits the reflected
system in numerous ways, the major one being the fact that the object and
the meta levels share the same functionality which leads to a robust environ-
ment where no additional effort is needed in proving the two as equivalent.

• Higher-order abstract syntax techniques form a plausible system for efficient
and practical reflection of syntax. Specifically, proofs that are based on
concrete-syntax can be formalized in such a system in a natural way: quoted
variable names behave just like Scheme symbols. We do not even require
sophisticated pattern-matching rewrite methods to deal with quoted syntax,
although our approach does not conflict with such method should there be a
need for them.

• Using shifted operator names is a viable solution to the problem of reflecting
a uniform language with semantics that forbid quoted contexts. The result
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is just as convenient to use as using a quote context in Scheme, and it makes
it very convenient to mix quoted terms with unquoted descriptions. In ad-
dition, the resulting quoting scheme not only makes it easy to reflect the
same syntactic objects (making it a direct reflection), but it is also naturally
efficient — there is no need to take special care in avoiding an exponential
blowup: shifted content has exactly the same size as unshifted content.

This is relevant in a wider scope than Nuprl: it can be applied to other
contexts in which referential transparency is required.

• Our HOAS formalization does not depend on types as the tool that forbids
exotic terms. Instead, we use a syntactic approach that is used to restrict
the construction of syntax-denoting syntax. Translated to a programming
language context, this method implies a syntactic check that makes sure
that shifted operators are well behaved — that bound variables are used as
inert values, only being passed around to ‘template holds’, not being used for
their value. This method can be used in other contexts, providing a lighter
alternative to common type-centric approaches, especially in the context of
dynamically typed languages.

• Our implementation is mostly independent of Computational Type Theory
(CTT), no semantical changes to Nuprl are required for our implementation.
This includes the fact that the reflected syntax is automatically open-ended,
as it inherits its features from the Nuprl implementation.

This makes it an attractive strategy for adding reflection to existing theo-
rem provers and logical framework. The MetaPRL system has been recently
extended with reflective features, based on the research that was presented
here. It should be noted that the approach taken by the MetaPRL imple-
mentation simplifies things a little by using a ‘bterm’ as a basic constructor
for bound terms — this is a natural choice as the MetaPRL implementation
uses bound terms as the basic type.

• For users of the Nuprl theorem prover, the most important aspect is the
user interface. Our implementation covers all important aspect of the Nuprl
interface, including careful attention to display forms for quoted terms which
use colors to indicate ‘quotedness’ level.

1.3 Outline

The general structure of this text roughly follows the research path that it de-
scribes. Chapter 2 begins with a general discussion of reflection and related con-
cepts, and introduces the main guidelines that the work follows; it is an extended
introduction combined with the philosophical discussion and core around which the
implementation will be founded on. Appendix A describes some of the terms that
are used in our discussion, and is most relevant with this chapter. Getting on to a
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more concrete level, we consider various implementation strategies in Chapter 3,
taking into account theoretical as well as practical implications of these choices.
This leads to a natural choice for a directly reflected syntax scheme, which is thor-
oughly discussed, comparing its expressive power to known systems (mainly to
programming languages that are directly reflective), and the system-level exten-
sion that implements this is described.

Having made the implementation choice, Chapter 4 continues by providing the
basic semantical account of quoted syntax values; also mentioned in this chapter
are a few common higher-level abstract syntax approaches, which are different
from our account. In Chapter 5 the formal presentation is extended and additional
technical detail are given. These two chapters are based on work with Stuart Allen.

Chapter 6 demonstrates a practical proof that can be accomplished with our
new reflective extension — this chapter goes along two parallel levels: first, the
practical proof is described and used as a motivation for additional functionality
(encapsulated in a Nuprl theory), and on the second level, the issues that are
related are examined and clarified. The relevant Nuprl material is included in two
theory files, which are included for reference in Appendix B.

Finally, Chapter 7 concludes the thesis, highlighting the goals that were
achieved, and summarizing additional required work and future research directions
that have opened up as a result.
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Chapter 2
The Scope of Reflection
An implementation of a reflective system is in essence a merging of an object and a
meta language, two different environments, each with its own notion of syntax and
semantics. As a general phenomenon, reflection is any way which enables some
entity to refer to itself. In the context of logic and computer science, this requires
some form of meta-information about the entity in a form it can use. In any case,
the meta information can be viewed as constituting a language, even when it is
not obvious. For example, meta-data in a database is in the same form (language)
as the database itself, and a reflective object system uses the language of objects
to describe itself.

Syntax and semantics play a major role in this context: a syntactic entity refers
to some ontological entity in its semantic domain through a semantics relation. The
following discussion, therefore, starts with an examination of these attributes in
a general linguistic context. We then move to formal languages — programming
languages using a pure subset of Scheme as a concrete example, and logic, with
Nuprl’s Computational Type Theory (CTT) [18, 5] as our goal environment.

For the sake of clarity and completeness, the glossary in Appendix A should
be consulted for meanings of terms (some have varying meanings in existing liter-
ature).

2.1 Reflection Applied to General Languages

The term “language” as we use it, is a formal way of communicating concepts
— theoretical objects in some abstract domain. The language itself can come
in several different ways such as vocal sounds, written text, or text encoded in
computer files. Whatever form a language takes, there are rules to specify what
constructs are correct — syntax rules, and how to associate syntactic constructs
with the concepts they represent — semantics (or meaning). For example the
syntactic construct of the Hebrew sound “shalosh”, of the English letter sequence
‘t’-‘h’-‘r’-‘e’-‘e’, of the ASCII character string “3” in some conventional program-
ming language, and of the Nuprl term ‘natnum{3:n}()’, all have the semantics of
the number three. The semantic rules match syntactic structures in the language
to objects in the domain that this language denotes.

Note that the place where syntax ends and semantics begins is not fixed — we
decide what syntax is correct, and then how to get its semantics, so filtering out
some constructs can be done by declaring them as syntactically incorrect or by
making their semantics void. For example, we can either say that the expression
‘1+"a"’ is syntactically incorrect, or that it is syntactically correct but raises an
error when evaluated or compiled, making it meaningless. This is clear in a pro-
gramming language implementation: deciding what component is responsible for
detecting such errors — e.g., the evaluator, the parser, or the type checker; but

9
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it is also a question in natural languages: one option is that “books sky snail” is
syntactically incorrect because it contains a sequence of three nouns, but another
is that it is correct because all three words are spelled correctly; Chomsky’s 1957
example, “Colorless green ideas sleep furiously”, points at a related problem: there
is no agreement whether this sentence has any semantics or not.

In our context of discussing languages, the term “reflection” stands for a system
that must have at least the following two properties: it must allow syntax that
denotes (by its semantics) its own syntactic constructs (quotations), and it must
have some way of using these constructs. In written natural language, the first
property is achieved using quotation symbols. These symbols specify that a piece
of text is not to be taken as carrying meaning in the normal way, instead, it
represents the actual language syntax. For example, the English word “water”
stands for water, but the text “the English word ‘water’ ” uses the actual word
“water” as a piece of syntax1. It is obvious that quotations are a fundamental
aspect of reflection. The second property is achieved by the fact that we can
actually talk about these pieces of text as semantic entities. In the natural language
context, this means having words such as “word”, “sentence”, and “meaning”. The
reader should note that this paragraph is itself a good demonstration of these two
properties (and of the fact that more than two levels can be used).

Following the above, if we want a language that can reflect itself, the first
thing we need is for its semantic domain to include representations of the syntactic
objects of the language. In other words, make the set of syntax constructs a subset
of the represented values domain. We also need some syntax for denoting these
objects, call them quotations (in the natural language case these are quotation
symbols). When we have such a piece of syntax S1 that denotes (through its
semantics) a data structure that represents a piece of syntax S0, we say that S1 is
the quotation of S0.

Many representations can be used to specify quotations. One obvious choice is
taken from the informal usage of quotes and raw text in natural language: strings
of symbols. However, this is an extremely poor representation for programming
languages and logical systems since it does not reflect the inherently recursive
nature of syntactical constructs2. A representation that is natural in the context of
formal languages is using the language capabilities for compound data objects, e.g.,
defining structure types or using tuples and lists, but this approach has problems
too as we will see shortly. There are other options for quotations, like a quotation

1It is interesting to note that I have yet to find a dictionary that refers to
itself in the entry for “dictionary”. Moreover, on-line dictionaries are taken from
pre-existing books, with a “dictionary” entry that specifies “a reference book”.

2Natural language syntax is (implicitly) structured as well, but this structuring
can be ambiguous which means that a recursive tree structure can be insufficient,
but our goal is formal languages so we assume that (explicit) structure is desired,
and avoid irrelevant natural language debates.
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context, operator shifting3, and preprocessing mechanisms. These options and
more are discussed in Section 3.3.

In addition to syntax and semantics, most languages have an inherent eval-
uation process: we first receive the syntax, then understand what it denotes (if
it makes sense) using the semantics of our language, and then we evaluate the
result4. This is a mental process that starts with a sentence as a piece of syntax,
converts it to a piece of semantic information, and then forms a final mental piece
of information in our mind using some form of evaluation.

Evaluation can take several forms, for example — we can identify and expand
definitions such as “Eli’s wife” or pronouns like “you” and identify them with other
concepts such as a known person named “Regina Barzilay”. We can also use some
logical rules that are part of our language like eliminating double negations. More
rules that we use to build such a ‘mental image’ can come from the process in which
this image is built, for example, adjectives specify object attributes, so they are
order-independent (e.g., “the big blue car” and “the blue big car” have the same
meaning). Finally, some information is taken from rules of the physical world: we
know that “mixing flour and eggs” is the same as “mixing eggs and flour”, or that
“a half-full glass” is the same as “a half-empty glass” (this, of course, can depend
on the context in which it is used).

There are also rules that handle quotations: this is interesting since it is the
way natural language implements linguistic self-reference. Quotations can be used
as any other object, and they actually describe their contents: so the first thing
that makes this similar to the world of programming is that (normal) evaluation
does not occur inside quotes. As an example, the previous paragraph mentions
several pieces of text that would evaluate to the same mental image if they were
unquoted5. More rules involve referencing pieces of text, as in “The third word of
this sentence”, or direct evaluation using terms like ‘meaning’ as in: “The word
‘word’ stands for the concept of a word”.

This leads us to a third property of a reflected language: when we have the
above two — a syntax that represents syntax, and quotation rules — then it is
possible to talk about the language within itself, but there is no real guarantee
that the quoted language is identical to the language itself. Therefore, the third
property is the correspondence between this representation and the language itself.
This can be regarded as the guard-dog that makes sure represented objects behave
as we expect them to behave. The form of this correspondence depends on the
nature of the language:

3This is the term we use for creating syntax-denoting operators from existing
ones, it will be explained later.

4It can be claimed that there is only semantics and no evaluation, but again, this
is an irrelevant discussion given our target languages as it only shifts terminology
from ‘evaluation’ to a ‘semantic function’.

5A more playful example from Smullyan: “This sentence is longer than ‘this
sentence’ ”.
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• In a natural language we want quoted text to be related to the actual meaning
of that text; for example, the words “gray cat” denote a gray cat.

• In a programming language we want evaluation of quoted source code to
behave in the same way as the code evaluates when unquoted, otherwise we
have a plain interpreter/compiler for a different language. (Alternatively, if
we reflect a different aspect like types or meta-objects, we want the semantics
of these represented objects to be tightly related to the semantics of the
objects they represent.)

• In a logical system, we want a reflection inference rule that can take a piece
of quoted inference and if that inference is valid, conclude that the actual
fact is true (i.e., provability of some represented term implies that the term
itself is true).

2.2 Reflection in Formal Languages

Formal Languages

When talking about formal languages, we have to be more precise than above. We
begin with programming languages, and then discuss languages that are used in
logic.

(Note that natural languages may be formalized — for example see Montague
grammars [54]; it is just in the context of this work that we treat natural languages
informally.)

A programming language has some formal rules for constructing its syntax,
and a function that evaluates such input, producing some result. The operational
semantics of the language is defined by this evaluation process that turns syntax
into values. The evaluator can come in several forms such as an interpreter, or the
composition of a compiler and machine execution. For the purpose of executing
programs, a programming language is adequately defined by its syntax definition
and its operational semantics.

Implementing reflection in a programming language context can mean different
things depending on the reflected properties — we can reflect an object system
creating a Meta Object Protocol (MOP) [45], we can reflect types [74], or we can
reflect inherent properties of our language (like exposing unification in a Prolog-
based languages). An interesting attempt at surveying some of these and relating
them can be found at Demers&Malenfant [26]. In the context of this work, we focus
on the traditional meaning of reflecting evaluation (i.e., reflecting the operational
semantics) — where reflecting a language means having the ability to write code
that can generate and execute code in the same language.

Such reflection is, of course, almost always possible, since even with primitive
language like assembly, we can use the operating system to write a text file con-
taining some code, invoke the assembler over this file and execute the result. This
is, however, an extremely crude way of implementing and using reflection because:
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1. It relies on features that are external to the language itself (the operating
system and accessibility of a compiler in this case) which is inefficient, might
not be available at run-time, and does not explain how the semantic circular-
ity is achieved. Moreover, this does not constitute a theoretical explanation
of reflection which is our main focus.

2. Reflection is achieved through manipulation of code as flat strings, which is
a low-level representation that is difficult to manage and understand, mainly
because flat strings fail to represent the recursive nature of the syntax [9].
An even more extreme example of this is Gödel numbers [32] which can the-
oretically be used like any other encoding, but are not intended for practical
use.

Smullyan’s “Diagonalization and Self-Reference” [67] provides an excellent and
very extensive introduction/survey of self-reference, and various quotation schemes
that make it possible, though it does not address issues that arise in computer-
implementations.

For the purpose of reflecting syntax, what we therefore need is some data
structures within the language that can represent syntax, and, some mechanism to
specify such quotations. Quotation of a piece of syntax S0 in this context means
finding a piece of syntax S1 that evaluates to an object which is a representation of
S0. This is similar to the natural language case, where S1 is related to S0 through
its operational semantics.

As mentioned earlier, the obvious way for representing syntax is to define re-
cursive data structures (assuming the language has some way to define such struc-
tures). This can vary from verbose representations like the Abstract Syntax Tree
entries used by CamlP4 [25] to the uniform lists of Scheme [44]. Note that these
data structures participate in defining the line between syntax and semantics —
everything that can be parsed to such structures is considered valid syntax.

The next step on the way to reflection is to have some form of an evaluator
available at the user-level. One way of achieving this is to implement one — this
has the advantage of requiring only user data structures and Turing-completeness
(ensuring that a universal machine is possible in the language). An obvious reason
for rejecting this is that it is basically re-inventing the same wheel you are already
riding on, but an even stronger reason is that this is not true reflection in the sense
that the implemented evaluator has no relation to the language used except for
the programmer’s wishful thinking. As a design principle, “true” reflection should
be enabled using the actual evaluation function which executes the program itself
— this is by means of exposing it to the language, making both the meta and
the object levels share functionality. This guarantees the third property mentioned
above (the correspondence between the language and the reflected language). This
is the major motivation behind this work and the main thread of discussion, and
will be further discussed in Section 2.5.
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Formal Logical Languages

Implemented logical languages are formal, which makes their study similar to that
of programming languages. However, the common approach in logic is treating
the actual language syntax as secondary to the main issue of truth — many times
not even completely specified6, since it seems that the only hard requirement is
being able to communicate logical content with people. This difference comes
from a fundamental difference between the logic and the programming languages
communities, where each side has its own methodologies and goals. As we shall see
later on, this difference leads to very different approaches in reflecting a theorem
prover system. Harrison [35] gives a survey and a critique of reflection in theorem
proving; in this text he questions the practical necessity of reflection, which is
perhaps another factor contributing to this methodology difference. Personally, I
believe in a strong relation between programming languages and theorem proving,
therefore I think that given the extreme usefulness of reflection in the first, it is
likely to be just as useful for the second — providing the same “leap in expressive
power” (borrowing the words of Taha [70]).

Implementing reflection in a theorem prover does require a complete and pre-
cise syntax definition because (a) theorem provers combine logic with a computer
implementation therefore the syntax used to communicate with the machine needs
to be specified, and (b) reflecting syntax turns it from a second-class tool that is
used to describe concepts to a first-class semantic object type.

The semantics of logical systems are quite different from those of programming
languages. Operational semantics are sufficient for programming languages as they
are mostly concerned with program execution, but a logic has truth semantics.
For example, reflecting a PL’s operational semantics is usually theoretically easy,
but reflection of the truth semantics of logic is harder (the former concerns a
universal machine which is always possible with TM-equivalent languages, and
the latter is usually impossible (e.g., Tarski’s theorem about the undefinability of
truth.)). However, the situation is still quite similar to programming languages:
truth semantics includes some object domain, and to reflect the language, the
first thing we need are values that represent syntax and the syntax for denoting
such values. The next step is, again, reflecting some semantic property, and there
are several options for this, but usually the provability of logical sentences is the
property we want to reflect.

In a theoretical logical world, the objects that represent syntax are as abstract
as any other concept such as numbers. Any such representation would suffice, since
there is no universal symbolism that can be used for literal quotations. This means
that the preferred choice would be the one that is simple to handle theoretically.
This is the reason Gödel numbers make sense in such a logic — the only thing they
require is being able to represent integers, which is available in most ‘interesting’

6Issues like renaming bindings for substitutions or specifying how multi-variable
substitutions are made are often hand-waved.
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logics. However, this requires tedious maintenance of translations between num-
bers and the syntax they represent, resulting in complex syntactic functionality7.
High-level operations like alpha-equality are extremely hard to use when such a
representation is employed, even if implemented as a computer system. One of
the outcomes of this is that actual Gödel numbers (beyond a demonstrational toy
example) are rarely seen or used.

In contrast to that, a theorem prover that implements a logic is a computer
program, and as such it already contains syntactic data structures and functionality
to deal with them. These syntactic data structures are at the opposite end of the
usability scale when compare to Gödel numbers — not only are actual structures
used, they are the only way to communicate with the machine. What this means
is that the actual syntax that is used to communicate with the theorem prover is
already made of object level values of the implementation (= the meta-level) —
so we do have ‘real symbols’ that can be quoted, by making the same syntactic
objects be available as semantic values (with some quotation syntax to denote
these values). A considerable advantage of this method is that most of the tedious
syntax functionality is eliminated since it is part of the implementation, and we
will see additional advantages in Section 2.5. The disadvantage is that it requires a
logical account for something that used to be a mere implementation issue, unlike,
for example, integers that precede the computer implementation and therefore
are always formalized. Note, however, that any theorem prover system will have
some form of syntax which can be reflected into the system — and the theoretical
account of this fact will demonstrate how this would be possible even in an ‘on-
paper’ system (where an exact ‘implementation’ is left vague).

It should be mentioned that the concept of a meta-language is not at all foreign
to theorem provers – in fact, a programming language that grew out of the theorem
prover world is ML (“Meta Language”) [52]. This language was designed as the
meta-language for the LCF theorem prover [33], and later on became the popular
choice for theorem provers at large, including Nuprl and MetaPRL [16, 36]. How-
ever, conventional use of ML in a theorem prover does not make it reflective: this
meta language is used as an implementation language, providing means to define
syntax (e.g., terms as a datatype of ML) and proofs (same for proofs), but it is
not accessible from within the logic itself.

2.3 Case Study: (Pure) Scheme and Nuprl

We now compare some of the relevant features of two formal systems — Scheme
and Nuprl. The comparison is made to motivate our notion of shared functional-
ity between the object and the meta levels, which is an issue that is approached
differently by the two communities. This difference is a bit surprising given that
the two sides are intimately tied together: Scheme is an untyped functional pro-

7Gödel numbers are essentially flat character strings, encoded with primes —
there is no recursive structure beyond the induction principle.
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gramming language that is inspired by the untyped lambda calculus which Nuprl
contains, both Scheme and Nuprl rely on a very uniform syntax structure, which is
manipulated directly (programs are S-expressions in the former, a structure editor
is used in the latter).

It is interesting to note that both communities owe a great deal to an influential
logician — Alonzo Church. Church’s introduced lambda-definable functions [12,
13] as a new basis for the foundations of mathematics, instead of set-theory-based
functions that were more common at the time. Later on, Church contributed to
making type theory accessible [14], and to the Lambda Calculus [15] which is a
direct ancestor to both Scheme and Lisp, and his work contributed to making type
theory accessible. The two directions have been developed in separate ways, but
in the last decade or so, the gap has been constantly shrinking with programming
languages research becoming more formal (e.g., the propositions-as-types principle
[21, 40, 24, 48] is now common practice), and theorem provers popularizing logics
that are tightly related to computations and programming languages [5, 18, 56,
17, 49, 61].

The reason for our choice of Nuprl and Scheme is not arbitrary: making Nuprl
a reflective system is the main focus of this work, and Scheme is a good source
of inspiration — the Scheme (and Lisp) community has been (and still is) deal-
ing with reflection for decades. Scheme is particularly a good choice due to its
simplicity compared to other languages, especially when it comes to its reflective
capabilities8. Furthermore, we restrict the discussion to a purely functional subset
of a typical Scheme implementation, side effects and other irrelevant concepts are
ignored as well as implementations that diverge considerably from Lisp on syntax
representation.

2.3.1 Syntax

Scheme

Scheme’s syntax is essentially the same as that of other languages in the Lisp family.
It is extremely simple — everything is either an atom of some fundamental type
(e.g., numbers and symbols), or a list of objects represented by some parenthesized
whitespace-delimited sequence of objects. This is actually the syntax for general
Scheme objects; the syntax for the language is a subset of these expressions —
symbols represent variable references, lists represent procedure applications, a list
beginning with the symbol ‘lambda’ represents a function, etc. This is the first of
several features that make reflection an integral part of the language. Quoting the
Scheme Revised5 Report [44, p. 3]:

8Note that there are some areas where Scheme is a little “less reflective” than
Lisp, which is a source of religious wars between the two camps. For this work, it is
important to use a simple language so Scheme was chosen — but we will not commit
on following the standard definition but rather focus on common implementation
techniques which are essentially the same as in Lisp.
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Scheme, like most dialects of Lisp, employs a fully parenthesized pre-
fix notation for programs and (other) data; the grammar of Scheme
generates a sublanguage of the language used for data. An important
consequence of this simple, uniform representation is the susceptibility
of Scheme programs and data to uniform treatment by other Scheme
programs. For example, the ‘eval’ procedure evaluates a Scheme pro-
gram expressed as data.

Scheme implementations have a reader function (‘read’) that parses input, and a
printer function (‘write’) to display values. The philosophy behind this is that
printed output always represents values equal (modulo object identity) to the result
of feeding this output back to the reader9.

In Nuprl, the situation is similar — terms are the fundamental syntactic ob-
jects: they are used for input, output, and all internal processing. The information
that terms represent comes from their operator name, their tree structure, and from
attached atomic values (parameters). The structure of a typical Nuprl term is a
tree structure of terms with no parameters and terms with parameters and no sub-
terms as leaves. The equivalents of the reader and printer functions in Nuprl are
its structure editor, used to enter terms, and a display-form mechanism that ren-
ders terms using plain mathematical symbols. This places Nuprl well among other
“language-oriented” tools, including Scheme and Lisp environments that can be
extended to new syntaxes, and modern frameworks like Intentional Programming
[63].

2.3.2 Semantic Values

Values that are used by an implementation of our Scheme subset are of three major
kinds:

• atomic values such as symbols, numbers and strings,

• composite values — lists holding an ordered sequence of values10,

• function values, which can be generated by evaluating ‘lambda’ forms.

Lists are implemented using the ‘cons’ function that constructs a pair (head
and tail) in memory (a cons cell) and the empty list (‘’()’). The ‘list’ function
is a convenient shorthand for creating lists: ‘(cons x (cons y ’())) = (list

x y)’.

9This is not possible with all objects, for example, functions usually cannot be
printed. Also note that feeding such output back to the interpreter will re-evaluate
it unless it is quoted, which is an issue when printing datums that are themselves
valid programs.

10We ignore other composite values like vectors and “dotted-lists”.
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The way syntax is represented in Scheme raises a subtle point: the Scheme
interpreter sees all input through the glasses of its reader function11 — so when
Scheme source code contains, for example, a number, the reader will parse this
and create the internal representation of that number, which becomes part of the
(parsed) input source; therefore, the syntax for a number is itself, and there is
no distinct ‘numeral’ type. Other values, including lists are also represented by
themselves using the same mechanism, making it possible to use the language as a
meta-level tool. Function values are closures, and have no external representation
as they close over run-time information (the lexical environment).

As said above, the first step in achieving reflection should be extending the
domain of the language so it holds syntactic structure objects. In Scheme this is
done by making objects be the syntax that represent themselves, so the domain of
Scheme objects is a superset of the domain of Scheme syntax structures. This point
is unique to Lisp dialects due to the combination of an interpreted environment
with the way syntax is represented as values.

Nuprl

In Nuprl, the language is even more uniform than Scheme: the only syntactic
objects are terms. A term can have a list of (typed) parameter values, and it can
have bound subterms. There are no distinct atomic values: they are replaced by
terms that carry information in their parameter list. As in Scheme, all terms are
subject to evaluation — canonical terms evaluate to themselves (also called value
terms) and non-canonical terms have evaluation fragments that dictate how they
are reduced. As an example, the equivalent of the Scheme atom ‘3’ is a ‘natnum’
term with a number parameter ‘3’ and no subterms — it is a canonical term, so it
evaluates to itself.

Similar to the Scheme case, the same first step that should be done to achieve
reflection in Nuprl is making the syntax that the system uses available within
the system. This can be done in several ways (see Section 3.3), but there is one
important decision that should be made:

• We can use user-level Nuprl constructs to describe system values — making
a user-level imitation of the implicit meta-level implementation.

• Or we can choose to somehow make the actual values that are used in the
implementation available to users, achieving a similar situation to Scheme,
where the implementation and the user share syntactic data structures as is
the case with Scheme integers.

This decision, whether to imitate or to expose the implementation, is the main
subject of Section 2.5.

11It is sometimes argued that Scheme is defined in terms of character strings —
this is irrelevant here since we are interested in a typical implementation rather
than the proper standard.
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2.3.3 Evaluation

Scheme

A Scheme interpreter is basically a read-eval-print loop (“REPL”). The ‘read’
and ‘print’ parts are responsible for user interaction (mapping between internal
objects and textual representations) and ‘eval’ is the Scheme evaluation function,
implementing its operational semantics. ‘eval’ is a [partial] function that takes
some input source code (an internal representation built by ‘read’) and produces
the results that this code evaluates to, if any. It is an applicative-order evaluator
that uses lexical scoping.

The fact that ‘eval’ is a function from Scheme values (syntax representations)
to Scheme values (output values) might sound confusing at first: how can it distin-
guish values that represent code from other values? The solution is simple — the
input is always taken as representing code and the output is always the resulting
data. For example, if the code ‘(list ’+ 1 2)’ is evaluated, the return value is a
list holding the symbol ‘+’, and the numbers ‘1’ and ‘2’, and this is not evaluated
further. In fact, if the ‘eval’ function was not available to the user, then there was
no way that it would ever get any input syntax other than user code — that is, it
could never be applied on expressions that are results, losing the relation between
Scheme syntax and values.

When a Scheme evaluation result is fed back into the interpreter, we get an
equal object in the case of a non-symbol atomic value, but other values (lists and
symbols) have meaning as syntax, leading to a different result. In other words,
Scheme’s evaluator is not idempotent. For this reason, the DrScheme pedagogic
environment [29] helps beginner-level students getting used to the language by a
customized printer function that displays such values as self-evaluating, making it
appear idempotent. For example, the result of evaluating ‘(list ’+ 1 2)’ is the
list holding the ‘+’ symbol and two numbers, and it is printed as ‘(list ’+ 1 2)’
or as ‘’(+ 1 2)’ by DrScheme. A few other Scheme implementations print values
in a similar way, trying to avoid the inherent confusion.

The operation of ‘eval’ on a given argument can be summarized as follows:

1. If the argument is a symbol, its binding in the current lexical environment
is returned;

2. If it is any other atomic value, then this value is returned;

3. If it is a list and its first element is a special-form then the corresponding
special evaluation rule is invoked;

4. If it is a list and its first element is a macro symbol, then the macro is
applied to the syntax of the arguments (source code values) and the result
is evaluated further12;

12This is somewhat simplified: macros are usually expanded before evaluation.
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5. Otherwise, the elements of the list are evaluated, and the first value is applied
to the rest.

Nuprl

In Nuprl, terms are used as the elementary data objects, representing logical sen-
tences, values, types and so on. In addition, the system contains an evaluator
component that uses terms as an untyped lambda-calculus language. Some terms
have an associated evaluation fragment which are functions that define reduction
rules for terms. This evaluator is different than Scheme in that it is a normalizing
evaluator: a term is repeatedly reduced until a canonical result is reached13. It is
also different from Scheme evaluation by using a lazy head-first reduction14. This
goes well with the semantics used by Nuprl — if a term x can be reduced to a
term y, then it is always possible to substitute x by y. To summarize, the Nuprl
evaluator is a lazy normalization (idempotent) function, mapping terms to terms.

Nuprl’s approach allows a lot of freedom in the sense that different evaluation
techniques can be intermixed, making it possible to reduce arbitrary subterms.
But, as we will see next, this complicates making the system’s syntax available at
the object-level in a direct way.

2.3.4 Quotations (Representations)

Scheme

Scheme syntax is defined so that it is made of values that are part of the language,
accessible to user code. The same holds for most other Lisp dialects. This, however,
was not always the case: the Lisp 1.5 Programmers Manual [50] specifies two ways
of expressing programs:

S-expressions These are symbolic expressions that are used for representing ar-
bitrary data, including Lisp source represented in internal form.

M-expressions The actual source language that a Lisp programmer uses is named
the “meta-language”, since it specifies how S-expressions are processed. M-
expressions can be represented in the form of S-expression for Lisp programs
that use other Lisp programs as data.

The distinction between the two was supposed to be clear: programs in the form
of M-expressions are what users use to write code for the compiler/evaluator, while
S-expressions are used for internal data, representing parsed input as well as other
user data. However, an evaluator function was written, essentially implementing
a Lisp interpreter for Lisp programs, using Lisp S-expression data as input. This

13This is similar to the 3Lisp evaluator [65] that differentiates syntax values.
14This is, however, only the default behavior: terms can be reduced in any

arbitrary order
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led to the representation of Lisp code using S-expressions being the dominant
programming language [51]. It might be possible to use a more ‘standard’ syntax
in a smarter way than the one intended to be used in Lisp 1.5 — modify the reader
and the writer functions so both use the same syntax — essentially modifying the
way lists are represented as text using a display-form-like mechanism. However,
this would require extra information such as annotating some symbols as infix
operators, dealing with precedences etc, and this is further complicated by the
fact that some lists are actually data. It seems like trying to separate Lisp syntax
from Lisp data using such shallow approaches is impractical: such a separation
will inevitably lead to a different language15.

As said above, Scheme values represent themselves, and composite pieces of
syntax are represented by lists, so quotation becomes trivial: to quote a piece of
input source you simply write an expression that will have it as its result. The only
piece missing from this picture is some way for writing expressions that evaluate
to symbol values — the evaluator treats symbols as variable references, so a new
special form is added to the language. This form, ‘quote’, stops evaluation of a
symbol: the result of evaluating ‘(quote a)’ is the symbol ‘a’.

Now we know that:

• to quote a symbol, we wrap it by a ‘quote’ special form;

• to quote any other atomic value, we simply use it (it is self-evaluating);

• to quote a composite syntax (a list) — use the ‘list’ function to create the
list out of expressions that evaluate to the content of the desired list.

For example, the quotation of ‘(+ 1 2)’ is ‘(list (quote +) 1 2)’. The main
problem with this is that it is not a proper quotation mechanism — the quo-
tation does not directly use the quoted syntax. For example, quoting ‘(+
1 2)’ twice yields ‘(list (quote list) (list (quote quote) (quote +)) 1

2)’. The ‘quote’ special form is therefore extended to stop evaluation of any syn-
tax object, including lists. For example, the quotation of the above expression
is ‘(quote (+ 1 2))’ and the second quotation is ‘(quote (quote (+ 1 2)))’.
This makes it a proper quotation mechanism using a special quoted context where
code represents code rather than normal computations, just like quotation symbols
in written natural language texts.

Nuprl

As mentioned above, the Nuprl evaluation process is designed to follow its intended
semantics — so terms can be substituted no matter where they occur. Therefore,
adding a Scheme-like ‘quote’ term that creates a non-evaluating context is im-
possible, as it would require changing the Nuprl evaluator and its semantics in an
incompatible way. There are other possibilities, which will be discussed in more

15The Dylan programming language is another indication of this.
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details in Section 3.3. One thing to note is that the conventional approach is to
use a simple recursive type definition (in the Nuprl case, this means a triplet of
an operator name, a list of parameters, and a list of subterms), but as we will see,
this is an undesirable solution.

2.3.5 Reflection

Scheme

Lisp was designed to be well suited for symbolic processing, including the process-
ing involved in executing Lisp programs. Scheme inherited most of this design,
and had ‘eval’ added in its 5th revised report [44] in 198816. Reflection is closely
related to the sharing of syntactic structures between the implementation and the
object levels, which is evident also in macros as source-to-source transformer func-
tions. The combination of sharing syntactic structures and an evaluation function
creates a simple reflected environment. The question is — how can a user-level
‘eval’ function be implemented in Scheme?

As said in Section 2.2, we can get the evaluation function for a language that we
want to reflect either via re-implementation or by exposing the actual evaluation
function to the user level — breaking the abstraction barrier between the language
and its implementation. Scheme implementations usually choose the latter: the
‘eval’ function is the same as the one that the implementation uses for evaluating
all code. This is simpler, safer and more efficient, as we shall see in Section 2.5.
It should be noted that such an implementation is not required by the Scheme
Report, the only thing that is required is the availability of an ‘eval’ function that
evaluates Scheme expressions.

Making the interpreter share syntax with user level programs is another exam-
ple of such exposure — internal implementation functionality uses data structures,
which are also reified as user-available data. The Scheme report requires that
Scheme code is be represented as Scheme data, and exposing these internal struc-
tures is the most obvious approach. This way of reflecting a system by exposing
some of its internal functionality is the main topic of Smith’s work [65, 64] and was
referred to as procedural reflection, we will generalize this idea as direct reflection.

Nuprl

Reflecting Nuprl should in theory be possible with any quotation mechanism. Pre-
vious efforts [3] (also [47, 41]) used the recursive data type approach, but this
turned out to be impractical — it has led to re-implementation of large parts of
the system in a formal setting, which grew too big to be easily manageable, and
was never finished. The main concrete result appeared in [6], where reflecting

16Although it was always common for Scheme implementations to have an ‘eval’
function.
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syntax was not detailed. This work began as an attempt to achieve better syntax
reflection which should eventually lead to a practical reflection implementation.

2.4 Quasi-Quotations

An issue that was not raised so far is that of quasi quotations. The problem with
proper quotations is that it is only possible to quote pieces of syntax as complete
units, not providing any ability to intermix quoted syntax and descriptions that
refer to quoted syntax. For example, in natural languages there is no mechanism
that provides an escape from a quotation — so it is only possible to have pieces of
completely quoted text, or resort to tricks like:

• He said: “send it to”—you-know-who—“please”.

• He said: “send it to X please”, where ‘X’ is you-know-who.

and using Scheme notation for these:

(append (quote (send it to)) you-know-who (quote (please)))

(subst you-know-who (quote X) (quote (send it to X please)))

Note that in both cases, these sentences require access to syntax-manipulating
functionality such as ‘append’ and ‘subst’ (“—” and “where. . . ” resp. in the
natural language case).

The problem of mixing literal quotations with descriptions is one that many lo-
gicians faced, most notably Quine [60]. Quine’s solution is to reserve several Greek
letters as meta-variables, making it possible to ‘poke holes’ in a literal quotation,
making it a predecessor to quasi-quoting. The modern solution to this problem is
a successor to Quine quotes: quasi-quoting — quotations that are “mostly-literal”.
These quotations are special in allowing a temporary escape out of the quoted
context back into the normal language, where we can talk about syntax.

Quasi-quotations have become the standard tool that is used for mixing literal
quotations and descriptions (e.g., [22, 8, 53]). They are particularly common in
programming languages — with Scheme and Lisp being the most obvious repre-
sentatives, but used by practically any language with reflective capabilities such as
CamlP4 [25] and MetaML [69]. Lisp is a pioneer in this area, since it needed some
facility when macros were introduced into the language by Timothy Hart [43].

Using a quasi-quotes notation, the above is written more easily, since we no
longer require syntax-manipulations, we simply escape back to the unquoted level:

• He said: psend it to xyou-know-whoy pleaseq.

and in Scheme:

(quasiquote (send it to (unquote you-know-who) please))

or using the common, more succinct form:
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‘(send it to ,you-know-who please)

The treatment of syntax in Scheme tends to be more complicated than simple lists
of symbols, so sometimes ‘quasisyntax’ and ‘unsyntax’ are used; this is a fact
that we mostly ignore throughout this text. A much more extensive discussion on
this, as well as additional information on quasi-quoting (and quoting in general)
can be found in Taha’s dissertation [70].

Quasi-quoting is, of course, not an issue when proper quotations are not used.
For example, if there was no generic ‘evaluation-stopping’ context in Scheme (if
‘quote’ can only be used for symbols), then we would be forced to write:

(list (quote send) (quote it) (quote to)

you-know-who (quote please))

in any case. In fact, the ‘quasiquote’ functionality in Scheme is usually imple-
mented through preprocessing — as a macro that converts its contents to usages
of ‘quote’ and other syntax (s-expression) manipulating functions.

Being able to mix quotations with free descriptions is very useful in practice
— it allows combining the simplicity of plain quotations with the power of general
descriptions. In any practical context, there is therefore a need for quasi-quoting,
otherwise we end up with an environment that is either too restricted (allowing only
literal quotations), or one that is too complex to use (using syntax operations).
Regardless of the quotation mechanism we choose, we need to be able to use
quasi-quotations or some equivalent mechanism. The question is whether we can
have a simple yet elegant solution that provides this feature. As we shall see in
Section 3.3.6, there is always a way to achieve similar functionality, even without
proper quotations.

2.5 Exposing Internals vs. Re-Implementation

We now get to the major theme of this work — how should a computer system17

be reflected? As we have seen, there are two possible high-level answers for this
question:

• We have a system that can manifestly implement itself correctly, use this
ability so that the external system reflects the internal one.

• The computer system is already implemented correctly, expose this imple-
mentation to itself, exposing the correctness argument (in a system that has
a notion of correctness).

17One with some linguistic features, like a programming language or an imple-
mented logic system.
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2.5.1 Re-Implementation

If we follow the first solution, we get a re-implementation of the system within
itself. There are a few problems with this approach. First, consider the involved
effort: we are working within some computer system — a programming language,
a theorem prover, an object system, etc — and we are encoding functionality that
already exists as part of the system that we use. For example, if we implement a
Scheme interpreter in Scheme, we invest our efforts in recoding functionality that
is already part our implementation.

A justification for choosing to re-implement a system this way is that it provides
a better explanation. For example, any implementation of Scheme is in fact a
precise (Scheme) explanation of its operational semantics; a meta-object protocol
explains a class system using classes. If the implementation is written in a different
language, say C, then it already serves as a “C explanation” — but this provides an
inferior explanation of the environment we work with, and it’s not really relevant
for this work since it is not reflection. Similarly, Nuprl is a big computer system
that contains lots of functionality — but this is only a computer program, therefore
it is only an operational explanation (only the “how”, not the “what”). If we re-
implement parts of Nuprl within itself we could get a much better explanation
— for example, we could extract an alpha-renaming algorithm from a correctness
proof, and reason about the involved term types.

But there is another, more serious problem: such a re-implementation has no
relation to the original system18. For example, a Scheme meta-interpreter can be
written in Scheme, but the result is not necessarily related to the original — we
wish for the two language levels to be identical, but in practice there is nothing
that guarantees this. This is desired even in case there are bugs involved: a buggy
explanation of a correct system or a correct explanation using a buggy system seem
useless. We therefore want a way to guarantee that possible bugs in the system
are necessarily reflected in the explanation, which means that verifying either one
is sufficient to know that the other is correct. To verify that the effort involved in
a system re-implementation is correct, we therefore need more efforts in proving
that it is indeed equivalent to the original one.

This proof is yet another possible source of errors. Finally, even if one goes to
the trouble of providing such a proof, the result is still not robust — computer
systems are dynamic objects: bugs get fixed, features get added and removed, inter-
faces change. This applies to practical systems like Nuprl, and a re-implementation
will unavoidably lead to higher costs as the reflected version will require mainte-
nance to for it to be synchronized with the actual one — such maintenance can be
automated, but this too requires non-trivial efforts.

With some systems, it can be possible to rectify this problem by bootstrapping:
when the re-implementation is fully functional, we use it instead of the original

18Unless extraordinary efforts are taken to keep the implementation and the
re-implementation are synchronized.
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one. This means that the ‘real’ system we work with is a fixpoint of its description.
Many compilers, for example GCC and OCaml, are built this way. However, in
the case of a theorem prover, this approach requires a prover that can prove itself
correct and be able to extract its own code from this proof. This is quite difficult
as theorem provers use truth semantics rather than the operational semantics of
programming languages, and would require additional research.

2.5.2 Exposing Internals

The alternative to re-implementing existing functionality is, obviously, re-using it.
This usually implies breaking some abstraction barrier — for example, in CLOS
[45], the Meta Object Protocol is deriving its power from the fact that the object
system is completely exposed: details that are usually buried deep inside imple-
mentations of other object systems such as class definitions and method dispatch,
are defined in CLOS in terms of the object system itself, allowing definitions of
different kinds of classes and generic functions. The abstraction barrier of stan-
dard object systems is a black box that defines how the system behaves, but in
CLOS it is broken in the sense that it is no longer a black box — it is an open one,
with parts of the implementation exposed in a well-documented way (the various
protocols). In fact, breaking the black-box interface to an existing system is the
essence of reflection — the result is by its nature a system that can access its own
internals.

Exposing a system’s internals to make it reflected requires a design decision: the
reflected interface can have multiple forms with varying degrees of openness. For
example, Kiczales and Paepcke [34] demonstrate three levels of reflecting an object
system — allowing only introspection of internal data, adding invocation of internal
functionality, and finally making internal functionality modifiable: intercession.
In the case of reflecting Nuprl’s syntax, we can either expose the internal term
language interface in its full power, or we can expose a higher-level view such an
“alpha-equality” interface which abstracts away these names19.

Implementing reflection through internal functionality does not suffer from the
above mentioned disadvantages of a re-implementation. The first big win in this
case is a major one: there is no need in any proof of equality of the two levels as they
are identical. There is no need for a fixpoint since we use the implicit circularity
achieved by the ability to expose system functionality to its object level. In a
programming language, this means that we immediately know that the reflected
object-level language is inherently identical to the meta-level one. The result is
also robust in the sense that changes to the implementation are also changes to the
reflected system. We name reflection implemented in this way direct reflection.

The second advantage is that the involved work is minimized to parts that are
actually needed — parts that did not already exist. In the case of reflecting an

19As we will see in Chapter 3, exposing terms as accessible object-level values
leads to semantical requirements that restricts this choice.
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evaluation function, the only required work is interfacing the internal function to
the object level, and in the case of reflecting syntactic functionality in a theorem
prover the additional work is in expressing facts that the operational implemen-
tation lacks (which can still be substantial). The fact that almost no additional
work is needed for reflecting evaluation makes exposure a natural implementa-
tion technique — doing it any other way (i.e., through a meta-circular evaluator)
seems pointless for any purpose other than a pedagogical one. This is evident in
informal discussions too: if we have spent a book chapter defining computation
using Turing Machines, then when we get to talking about a universal machine
we simply say that it is a Turing Machine that follows the rules in the previous
chapter rather than repeat the description in the form of a fully-specified machine
implementation. Note that it is not always the case that exposing functionality is
easier: for example, reflecting an object system involves more work — the internal
implementation is usually not defined in terms of itself, which means that expos-
ing functionality requires more work (usually rethinking the implementation), and
might also lead to performance costs. As a result, the conventional approach to
reflecting an object system (e.g., Java and C#) tend to be restricted to introspec-
tion only — where meta-entities such as classes and generics can be inspected via
the object system, unlike the ambitious CLOS definition that allows intervening
in the meta protocol.

In this work we conjecture that theorem provers tend to suffer a similar prob-
lem. The logical language is quite different from its implementation, and in ad-
dition the computer system is theoretically irrelevant to the proofs it deals with.
Therefore, there is a fundamental methodology difference from the world of pro-
gramming languages: the implementation is considered merely as a tool that is to
be ignored for the real work (it gets the same importance pencils get when dealing
with logic). As a result conventional reflective theorem prover implementations,
such as Aitken’s [3], have usually been attempted via re-implementation20. In
this context, even Gödel numbers appear as a viable option for reflecting syntax,
although they are impractical as a basis for an implementation. The nature of
reflection is that any description, including a theoretical one, becomes part of the
described system, falsifying the intuition that the system is an abstract ignorable
entity (thus, re-implementations must develop the functionality of a complete sys-
tem). Aitken’s work [3] is a demonstration of this, resulting in extensive efforts.
(Note that this conjecture is specific to theorem provers; in a theoretical logic
context, intensionality is similar to our direct reflection [66].)

A few more issues play a role at choosing an implementation strategy:

Additional work In the context of reflecting syntax in a theorem prover, the gap
that needs bridging is more substantial than a simple object-level interface
to an evaluation function. The theorem prover deals with truth semantics,
which means that facts about the behavior of its internals do not exist in the

20The Boyer-Moore system [11] is a little different in being an extension of Lisp,
therefore inheriting some of its linguistic features.
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operational semantics of its implementation. Therefore, these nonexistent
facts cannot be exposed, which translates to necessary work.

Type-system independence The reflected layer must be expressed in the theo-
rem prover, using any tools it can offer us. If we choose a re-implementation,
then we need a system that can deal with certain types such as symbols,
tuples, and lists, and related functionality like structural induction etc. This
might not be available in a theorem prover, or available in a few different
forms in a framework that can have several alternatives. In contrast, expos-
ing internal functionality must take the form of primitive functionality — a
new primitive data type that is the reflection of the internal type.

Decreased flexibility Another point to consider is that exposing the internal
syntax to the object level provides a tighter connection to the specific imple-
mentation, makes it less viable to explore different approaches to representing
syntax since a different implementation implies changing both the meta- and
the object-level.

Decreased portability Finally, although the principle of exposing internals can
apply to any computer system, features of the resulting reflected system are
unique to the system as they depend on features of the underlying imple-
mentation. For example, while MetaPRL [36] uses a term structure that is
very similar to Nuprl terms, the implementation is quite different, therefore
achieving reflection via exposing of these internal structures will result in two
different systems — this is evident in the form of reflection that was used in
MetaPRL [55]. In other words, except for the implementation techniques we
use, the portability of the solution is mostly lost.

2.5.3 Duplicating Information Considered Harmful

As said above, the main advantage of re-implementation is a pedagogical one —
reflecting the existing implementation in a better language, leading to a better
explanation. In programming languages a better explanation means one that is
written in the same language, and in a theorem prover it means providing a factual
explanation — using truth semantics. However, in my judgment and experience,
the additional massive effort required for a practical implementation outweigh the
pedagogical advantage. By exposing internal functionality we make it possible to
use just parts of it, re-implementing others when there is a pedagogical need.

When considering the pros and cons of implementing reflection using either
re-implementation or exposing, I conjecture that exposing is a better approach,
but this might be a result of personal bias: it is my belief that the holy grail of
computer science is the concept of abstraction — and the essence of abstraction
is making it possible to put an identity on a piece of information, and re-use it
multiple times rather than duplicate it. This applies to any kind of information in
general, and to algorithms in particular. I think that this is the root of the problem
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of the impracticality of previous attempts to reach a practical implementation of
a reflected system. This summarizes the main principle of this work, and will be
used to guide all design decisions:

to gain the full power of reflection, internal meta-level functionality is
exposed as object-level functionality.

Note that when we get to design the actual implementation, it could consist
of a mixture of exposures and re-implementations. The system we want to reflect
will usually consist of several components, each one can be implemented differently.
Our design principle will therefore be relevant in several occasions.



Chapter 3
Implementing Quotation
In the previous chapter, we saw that the first step in implementing reflection for
Nuprl is to reflect its syntax. This is the foundation for the rest of this work, and
will have a high impact on the reflected system. In this chapter we first describe
Nuprl terms, then discuss the various options we have for reflecting syntax, and
finally choose one and describe the implementation. Following the main principle
laid out in the previous chapter we aim at reflecting syntax through exposure of
implementation details. A consequence of this is that implementation issues cannot
be dismissed as “technical details” — they play an important role and are central
to the design of the reflected system — such issues come up when we expect to
expose implementation details to user code.

But before we begin, we introduce a syntactic notation that will be used
throughout this text.

3.1 Syntactic Sequence Notation

This work is centered around syntax, both in the theoretical and the practical
discussions. Unsurprisingly, our syntax contains many forms of sequences (e.g.,
binding lists, subterms, sequent hypotheses), which are used in both the meta-level
(e.g., rules) and the reflected object-level. To make this more convenient, we adopt
Scheme’s ellipsis notation [44] for specifying sequences: an ellipsis (‘...’) specifies
that the preceding syntactical unit denotes a sequence — when this syntactical
unit contains a meta-variable, then this variable actually stands for a sequence of
the matching variables indexed as usual (or with multiple indexes in case of nested
ellipses); when the number of syntactical elements in the sequence is significant,
we will subscript the ellipsis by it. For example, we can say that ‘λ〈x, ...n〉.xi’ is a
λ-term that denotes the ‘Πn

i ’ projection function of n-tuples. In places where the
sequence length is insignificant, it will be omitted. Similar notations are common
in informal explanations, for example, an overbar notation for sequences is common
in Nuprl-related literature.

Note that this is merely a notation — the actual representation that is used
can vary. For example, the representation of Nuprl terms uses lists, but the the-
oretical account often uses indexed functions. The actual representation will not
be ambiguous as it will always be explained in advance. In addition, we will use
this notation to specify syntactic transformations (for example, to define rewrite
rules) and for that it will be extended in Section 6.2.

3.2 Nuprl Terms

Nuprl terms are the fundamental data structures that are at the core of the system.
They have the same role S-expressions have in Scheme — serving as a general-
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operator︷ ︸︸ ︷
opid︷︸︸︷
foo{

parameters︷ ︸︸ ︷
bar :t︸ ︷︷ ︸
value:tag

, 3:n}(

bound subterms︷ ︸︸ ︷
x, y, z. t1︸ ︷︷ ︸

bindings.term

; x. t2)

Figure 3.1: Term parts

purpose uniform data structure that is used to represent all syntax (expressions,
propositions, types, programs, etc), as well as administrative system information
(display forms, rules, editor information, etc). Unlike Scheme, they exist only at
the meta-level, thus as part of the implementation.

This section is a quick informal summary of Nuprl’s term structure, related
functionality, and usage issues, with an emphasis on points related to reflecting
the syntax. It is mostly a gloss of Aitken’s description [3, Chapter 1] and the
Nuprl Reference Manual [42, Chapter 4], which should be consulted for additional
details.

3.2.1 Term Structure

Nuprl terms are defined as a recursive data type that has the following structure:

1. An operator, which is made of:

• An operator identifier, abbreviated as “opid”.

• A sequence of parameters, each one is a pair of:

– some value;

– a type tag for this value: an index family.

2. A sequence of bound subterms, each one is a pair of:

• a sequence of bound variable names (strings);

• a term.

Figure 3.1 illustrates the various parts of a term.
For example, the λ-expression ‘λx.x+ 1’ is specified by a Nuprl term that has

the following full form:
lambda{}(x.add{}(.variable{x:v}();.natural_number{1:n}())),

or, removing redundant punctuation we get
lambda(x.add(variable{x:v};natural_number{1:n})).

Note that parameter values are part of the operator, so ‘natural_number{1:n}’
and ‘natural_number{2:n}’ (abbreviated as ‘1’ and ‘2’) are different terms because
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they have different operators. Terms are actually distinguished by their signature:
the signature of a term is the pair of its operator and its arity, where the arity of
a term is defined as the list of its binding lengths.

Using the ellipsis notation, a term with k parameters and n subterms, each
with mi bindings, looks like ‘opid{v:f,...k}(x,...m.t;...n)’ where ‘opid{v:f,...k}’ is
the operator. The signature of this term is therefore: ‘opid{v:f,...k}[m, ...n]’.

Operators are a discrete, open-ended set, which means that Nuprl terms are
also open-ended. This is not only due to the nature of operator identifiers, but
also due to parameter types. Whatever representation we choose for quotation of
terms, we have to account for this open-endedness of terms, and allow for quoting
arbitrary terms with arbitrary parameter kinds.

Bindings

As expected, bindings are a major issue when dealing with Nuprl’s term language.
Internally, the implementation simply uses strings for bindings: the list of bindings
for each term’s bound subterm is a list of strings, and a variable reference is a term
that contains a string parameter value that names the variable. For example, in

lambda(x.add(variable{x:v};natural_number{1:n})),
both occurrences of ‘x’ are plain strings. The connection between binders and
bound occurrences is made through the family of variable name parameters (the
‘v’ tag), which holds string values comparable to binder strings.

To make interaction with the system easier, and texts such as this less verbose,
variables and natural numbers are abbreviated as their value, e.g.:

lambda(x.add(x;1)).
Such abbreviations are ambiguous (‘foo’ can be either ‘variable{foo:v}()’ or
‘foo{}()’), but in practice this will not be a problem.

Note that Nuprl uses terms-containing-bound-subterms as its basic objects,
but in some situations it is more natural to use bound terms (containing bound
subterms) as the basic type. These two approaches are quite similar, the main
difference is whether binding names are associated with a subterm or with its
surrounding term. Using terms is a little more natural for Nuprl, since the meaning
of an operator depends on its arity — for example, it is more convenient to say that
a λ-term has an operator of ‘lambda{}’ and an arity of [1] instead of talking about
all bound ‘lambda{}’ terms that contain a bound subterm with a single binding.
Another implication of this is that binders are taken as part of the surrounding
syntax rather than part of their scope term. We will, however, occasionally switch
to the alternative view in situations it is more convenient to use.

In Nuprl, the same binding name can occur multiple times as long as occur-
rences are in different subterms, which is a feature that should be available in
the reflected syntax too. In the following theoretical account we forbid multiple
occurrences of a name in substitutions; the reason for this is our commitment to
follow the implementation, judging alternatives by this criteria renders most as
irrelevant. The point of duplicate binding names demonstrates the advantage of



33

using direct reflection: there are many design decisions that were made during
the implementation of Nuprl, some are hard to be aware of until we inspect the
relevant low level details, or invest enough efforts in considering alternatives. No
matter what these decisions are, we can be assured that we will reflect the actual
functionality including such subtleties that we are not (yet) aware of, essentially
trusting years of human efforts.

3.2.2 Interaction

Nuprl is an interactive system, that also has a compiled mode. It’s interactive
functionality (dealing with terms, editing proofs etc) is available at three levels.
On the lowest level, the system is implemented in Lisp, making it possible to
operate on Nuprl objects via Lisp. Since this is the implementation level, it is not
used for normal editing. Nuprl includes an implementation of ML, which is the
user-level language that is normally used by users when programmatic capabilities
are needed. In fact, large portions of the system are written in ML. The ML level
allows easy access to Nuprl objects, including types for all syntactic objects: it is
this level of functionality that we wish to reflect.

Structure Editor

The third level is the interactive system. This level consists of several important
parts. First of all, interacting with Nuprl involves lots of term editing — for this
there is a structure editor that is used to enter terms. The editor itself is mostly
implemented in ML, following simple specifications of common term structures.
Using it is similar to typing Lisp S-expressions: the user types a known operator
id (or a mnemonic), and the editor lays out the expected structure of the term
with empty slots to be filled out next.

Display Forms

The second important part of the interactive system is its usage of display forms to
present terms. The syntax structures underlying terms is a uniform representation
that is convenient for a computer to work with, but humans prefer a more succinct
and/or familiar presentation. For example, it is easier to read ‘λx.x+ 1’ than

lambda{}(x.add(variable{x:v}();natural_number{1:n}())),
which is a more precise presentation of the term structure. This is especially impor-
tant in the context of logic, where notation is important, and can vary according
to context (the field conventions, the author’s preference, etc.) following the need
to interact with other people (including people who are not using Nuprl). As a
demonstration of the need for display forms, the shorthand notations that are used
in this text (e.g., using numbers and variables as such (see Section 3.2.1)) can also
be considered as a kind of display form.
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Nuprl accommodates varying layouts by separating the internal syntax struc-
ture from its presentation form which is determined by a display form. In essence,
it separates the abstract syntax trees that are use by the system to maintain the
logical structure of terms and the presentation of this same syntactic information
relying on social conventions (perhaps ambiguously). The logical structure remains
faithful to an exact, machine-manageable form.

The display form specifies how terms are presented, which can include more
than a simple textual rendering information. For example, it can contain prece-
dence information which makes it possible to avoid some parenthesis, it can avoid
showing some parts of the syntax, and it can even present a nested structure as a
flat one (e.g., ‘λx.λy.y’ is rendered as ‘λx,y.y’) (this is a specific example where a
particular rendition is chosen according to the term’s context). Most display forms
are specified in the Nuprl library, meaning that users can customize their display
forms according to their personal taste and needs, yet still be able to interact
seamlessly with people who expect different notations. Also note that the display
form can go beyond simple text: they contain layout information (line breaks &
indentation), they can be used to render complex layout (e.g., via LaTeX) and
textual attributes (e.g., font attributes), and they can be extended to handle other
arbitrary computer display properties. Finally, the structure editor maintains the
relation between a term’s rendered form and its underlying structure; this relation
is used for operating on term parts and navigating between them.

This mechanism presents a unique opportunity: it can be used to enhance the
presentation of quoted syntax so it is close to the rendition of the unquoted syntax.
More on this below.

3.2.3 Substitution

The fundamental operation that builds on the concept of bindings and scope is
substitution. It is probably the single most important concept when dealing with
formal syntax, yet various texts ignore parts of its formalization, possibly hand-
waving “the right thing” instead. On the other hand, a running computer system
is completely formal in the sense that an fully-specified algorithm is required to
perform substitutions: for example, Nuprl has a substitution function that can
simultaneously substitute multiple variables at the same time, a process that is
rarely addressed properly in logic texts; we take such capabilities for granted since
we use the system’s functionality.

The actual Nuprl substitution algorithm is pretty complex due to the fact that
when renaming is required, it happens in a way that matches user expectations for
minimal renamings. The main reason for this is that it is an interactive theorem
prover, and as such it is important that variables are renamed in a manner that
humans can understand and even predict. Furthermore, this ability can be used (or
abused) by ad-hoc mechanisms that rely on being able to relate a renamed variable
with the original name. There are a few additional details that are ignored here:
the bottom line is that we take Nuprl’s substitution algorithm as given, and assume
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it satisfies certain necessary properties.

3.2.4 Term Meaning: Evaluation

The meaning that Nuprl assigns to terms is related to the way the system evaluates
them. The Nuprl type theory requires that terms are compositional: the meaning
of a term depends on the meaning of its subterms rather than on their syntax.
This has some rather important implications: (a) a term cannot have different
meanings when it is a subterm of different context terms, (b) any subterm t of
a term s can be substituted by any equal subterm t′, and the result will still be
equal to s. In addition, no special meaning can be given to binding names, so alpha
renaming preserves meaning, in other words, the Nuprl theory is defined over alpha
equivalence classes.

The Nuprl evaluator is lazy by default, although (following the above restric-
tion), any subterm can be reduced at any time, which leads to a few additional
evaluation schemes, as well as making it possible to implement any arbitrary-order
evaluations. In any case, evaluation is always partial, as there are always well-typed
terms that diverge.

Value, Abstract and Primitive Terms

We distinguish two basic types of terms: value terms, (also called canonical terms)
are terms that stand for a value. Evaluating such a term simply yields itself as
there is no reductions available. These terms can come in many forms: they can
contain multiple subterms (e.g., pairs), and they can use binders (e.g., a ‘lambda’
term).

Non-canonical terms are terms that can be further ‘reduced’, possibly leading
to an infinite loop. Roughly speaking, there are two kinds of such terms: primitive
and abstract. Primitive terms come with the system, and have some fixed assigned
meaning; they are the primitive ‘built-in’ terms that the system comes with (and
their implementation is part of it). Abstract terms are those that are defined as
‘abstraction objects’ in the library. These abstractions are simple (non-recursive)
pattern definitions that specify what the abstract term is defined as — when eval-
uating a term, such abstractions can be unfolded to their defined form. The core
of the system is made of a small number of primitive terms, and the bulk of terms
that users encounter are defined as abstractions over these building blocks, defined
in the standard library.

When Nuprl encounters a term that is not a primitive, and is not an abstraction,
it treats it as a value term.

The Nuprl Library

The Nuprl library, which has been mentioned a few times above, is the main
knowledge base with which users interact. The main core of the system imple-
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ments essential functionality, and the rest of it is defined within the system. Nuprl
comes with a standard library that contains most of its functionality. The library
is divided into theories, each of these is a collection of abstract term and display
form definitions, rules, theorems, ML code objects, etc. The library is therefore
an ordered list of Nuprl objects: the system tracks object dependencies, and re-
quires that objects depends only on preceding objects, avoiding mutually recursive
definitions.

Users interact with the system via library objects, and their work is saved in
a form of a theory (or several theories) which usually follow the standard libraries
that come with the system. A theory is roughly equivalent to a source file that con-
tains several related definitions. Substantial pieces of work that were implemented
are available as additional collections of theories.

Note that Nuprl does not have a notion of a ‘global environment’ that binds
free variables. Abstract terms are used instead, and they are not first class in the
sense that the do not stand for functions that can be quantified over or bound in
any other way. As a result of this, only closed terms can have a top-level meaning
in Nuprl; open terms are nonsensical, they cannot be used in any form.

3.3 Syntax Representation Options

The crucial starting point of the reflection implementation is choosing an appropri-
ate representation syntax. Back in Chapter 2 we went over various issues regarding
different options for doing this.

First, let us remember the syntactic capabilities of Scheme which was mentioned
in the previous chapter. Scheme has a particularly elegant way to reflect its syntax,
which serves as a motivation for this work. This capability is evident in two
important ways.

• First, Scheme’s syntax objects are S-expressions, a common data type that
is used by the language implementation as well as user code. The primitive
functions that construct and operate on S-expressions, and availability of the
basic building blocks of these recursive structures (symbols, numbers, string,
etc) for users provide a simple but rich system that can be used to toy with
language design1.

• This functionality by itself makes code processing available, but Scheme goes
further along and provides syntactic forms that make this even more conve-
nient. Strictly speaking, S-expression operators and primitive syntax objects
are the only thing that is required. Scheme could therefore be just as expres-
sive if its ‘quote’ form operates only on symbols, changing the quoted element

1In fact, a common criticism of the Scheme and the Lisp community is that
“everyone is a language designer”. This is leading to subtle but deep fragmentation
that other language communities don’t have as they have a much clearer line
between the language designers and its users.
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from a variable reference to its denoting syntax. However, Scheme extends
‘quote’ so it can be used with any syntax, making it a literal quotation —
making the Lisp family of languages the only one that has proper quotations
available. This should not be confused with preprocessing mechanisms such
as CamlP4 [25], which, as we shall see below, can be used as a substitute
for a lack of proper quotations. Scheme goes on to include a ‘quasiquote’
form that is similar to ‘quote’ except that it is used with “almost-constant”
literal quotations: where we want to quote a piece of code where some of its
parts are conventional code description (using S-expression functionality to
construct syntax).

We now consider some of the representation possibilities and related imple-
mentation techniques, bearing the Scheme model in mind as a good system that
combines a simple-but-powerful syntax system with convenient user facilities that
make it easily accessible.

3.3.1 Quotation Context

Indeed, an ideal syntax representation would be using proper quotations : where the
quotation of some term t has t itself as a subterm. This is a natural representation,
as witnessed by natural language quotations. In Scheme, it is implemented by the
‘quote’ special form, which always evaluates to its contents — in effect, it is an
“evaluation stopper” which turns its sub-expression from a syntactic value to a
user value. The natural language analogy is obvious: when we use quoted text (for
example “hello” in “I said ‘hello’ ”), it has the exact same form as normal text,
except that it appears in a quoted context that tells us that we should not use this
text as denoting its usual meaning (a greeting), but as something that talks about
the text itself (the word “hello”).

However, this approach collides with the way Nuprl is implemented — as de-
scribed in Section 3.2.4: in Nuprl, a subterm t that denotes some value can always
be replaced by any other term that stands for the same value; computing a term is
done through a normalization process, unlike conventional programming languages
evaluators2. It might have been possible to rework the implementation and the
semantics so a Scheme-like quotation context is used, but this would radically di-
verge from the current system. Changing the evaluator will lead to changes in the
semantics, in the theory, and in the formal account of the system; this effectively
requires reworking decades of work, moreover — it diverges from Computational
Type Theory which has a longer history and deep historical roots. This approach
is therefore disqualified as impractical.

2Nuprl’s evaluator is somewhat similar to Haskell.
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3.3.2 Black-Box Quotations

There is a slightly different way of achieving a quoting context in Nuprl without
changing its semantics: a quotation can be a term that contains the quoted term
as a parameter value rather than a subterm. This is easily achieved by extending
the system by a new parameter kind (an index family). Parameter values are taken
as part of the syntax, therefore they are not susceptible to evaluation — in fact,
their role in the semantics is purely syntactic.

Using such a parameter kind, we can use ‘quote’ terms which have the term
they stand for as a parameter value. For example, to quote ‘add(1;2)’, we use
‘quote{add(1;2):t}()’. This way, quotations are always atomic values — they
contain some information in an opaque way, requiring new construction and decon-
struction functions. In other words, the quoted term is represented in a way that
is not much different than a string that contains the term (in some unambiguous
way): the semantics of Nuprl involves terms that contain subterms; a term object
that is included as a parameter value is no different than any other object that
we happen to be able to map onto terms. Another (extreme) example of such a
quoting mechanism is Gödel numbers: they are just as opaque, but are worse in
that they require additional (and substantial) parsing work.

Ignoring the semantical issue, it seems like this approach does make it possi-
ble to have proper quotations in Nuprl, but there is an additional, more serious
problem with it — the resulting mechanism is similar to the natural language quo-
tations in that there is no way to mix literal quotations with descriptions. The
only way to achieve some equivalent functionality would be similar to the way
it could be done in natural language (see the example on page 23), using some
substitution function and two literal quotations, or other similarly crude facilities.
The reason for this difficulty is the same reason that made it possible to mention
terms as proper quotations in the first place — the quoted terms appear in a place
that does not have terms currently, which means that such an implementation
technique is bound to expose quotations as mere black-box values.

Being able to mix descriptions and quotations is a crucial property for ma-
nipulating syntax, it is important enough to dictate our choice. This option is
therefore disqualified as well. Together with not being able to use a ‘quote’ object
as discussed above, we are forced to use some form of a syntactic descriptions as
quotations rather than proper quotations.

3.3.3 Using Standard Type Definitions

The naive approach to representing syntax, would be to imitate the implementa-
tion’s term type as a system-level type. This is the approach taken by Aitken [3].
There are, however, some inherent problems with this:

1. First of all, it violates the main principle of exposing existing information
— the implementation has some term type which is re-implemented at the
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user level. This is in contrast to using a direct reflection which leads to the
advantages that were described in Chapter 2.

2. This is manifested in leading to a re-implementation of term-related func-
tionality, which requires intensive and non-trivial amounts of work. (Aitken’s
text [3] is close to 500 pages with around a 1/3 of that dedicated to repre-
senting terms, and it is still incomplete.)

3. Another consequence is that claiming that this representation is actually a
reflection of Nuprl’s syntax requires proving that both term types are equiv-
alent. In Aitken’s work this is not a problem since it implements the “paper
definitions” of the syntax — resulting in reflecting this syntax, while it is
possible that the implementation is different than both.

4. It requires a theory that can define such a type — we need to have tuples,
lists, atoms etc. This might not be available in every setting, for example,
working in a MetaPRL context that does not include ITT.

5. The size of a quoted term is exponential in its “quotedness” level, because a
quotation of a quotation includes a representation of the constructors of the
first representation. This is analogous to Scheme with no ‘quote’ context,
where quoting ‘(+ 1 2)’ over and over leads to:

• ‘(list (quote +) 1 2)’

• ‘(list (quote list) (list (quote quote) (quote +)) 1 2)’

• . . .

6. A related problem to the previous one is that these representations are in-
comprehensible — the second-level quotation above contains enough “repre-
sentation noise” to make the original term invisible.

The exponential representation can be improved using a different representation
— as an encoding of a term, we can use an additional integer that specifies how
quoted the term is. This means that to quote a quoted term all we need is to
increase this number, but the resulting encoding would be harder to define and
formalize, and term operations would become more complex: quoting a term twice
could be done in two ways, either repeating the same process, or increasing the level
for the second level. Another possible remedy would be using Nuprl’s definition
system — once we have quotation, we can have definitions that involve quotations,
and quote these instead of re-quoting the original values. This would improve the
term size problem, but not eliminate it, since terms that are quoted multiple times
still need to be expanded during processing. The main point here is that it might
be possible to overcome this problem in an ad-hoc way, but doing this might be
inelegant and complex to formalize.

As for the problem of re-implementing internal functionality — it might seem
that it could be solved by interfacing the object-level and the meta-level types.
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This would take the form of being able to translate the object-level representation
to internal term structures. The problem with this is that this translation must
take place internally, making it already some form of exposure therefore changing
the nature of the implementation, plus, the translation will not help in getting the
facts about this internal functionality. The conclusion is that it might be possible
given enough efforts, making it harder than approaching the problem with a direct
reflection in mind.

Clearly, this approach does not look promising, an assumption that is supported
by the efforts of Aitken.

3.3.4 Operator Shifting

A different kind of solution was first suggested by Aaron and Allen [1]. The idea is
that for every possible operator o in the system, there is a matching operator o′ that
is used to create syntactic values that mention usages of the original operator. o′ is
called a shifted3 o, and it is always a canonical value term. This makes it possible
to use a form of quotation that is actually a direct representation, that is very
convenient to use as well as providing quasi-quotation-like functionality.

Using shifted operators, it is important that every term will have a correspond-
ing shifted version, including shifted terms. Shifted operators are syntactic — they
consume and produce syntax representations. This is just a design sketch — there
are two questions that need an answer for an actual implementation:

1. What is the relation between given syntactic values and the term whose
representation is formed?

2. How does a usage of a shifted operator stand for a usage of the original one?

The first question determines the way terms are represented. One approach is
using Nuprl definitions: no matter how terms are actually represented, a shifted
operator has an implicit abstraction definition that unfolds to the actual repre-
sentation of the unshifted term — independent of the way this representation is
implemented, which makes this work even in the case of a recursive data type
(but note that this does not help solving the problems mentioned above). The
alternative approach would be making shifted operators be new primitive terms.
Since our goal is to ultimately expose the internal structure, there is no way to
define their meaning within the system and so we have to make shifted terms be
new primitives.

The second question is about the structure of shifted operator usages, and will
be discussed in Section 3.4 below.

3Note that Aaron&Allen do not use this name.
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3.3.5 Quasi-Quotations

As mentioned above, it is crucial to have some form of quasi-quotation when we
want to manipulate syntax. In a world where we want to talk about terms, it
is essential that we have the expressive power that allows us to conveniently mix
descriptions and quotations. On one hand, as said above, not being able to use quo-
tations will make for a system that verbose to the point of being incomprehensible
by humans to use as well as requiring solutions for problems like the exponential
representation. On the other hand, giving up on all descriptions will force arcane
solutions involving operations like ‘replace’ to imitate descriptions.

Quasi-quotations provide the best of both worlds: using them, you can specify
mostly-literal quotations and occasionally jump back up to a meaningful descrip-
tion.

3.3.6 Using Preprocessing

A good preprocessing facility can be used to cover up for a lack of quotations or
quasi-quotations. This is demonstrated by the approach that is commonly taken
by Scheme implementations: the primitive built-in syntactic facilities that most
implementations has two main features:

• First, there is an evaluation-stopper special form, ‘quote’, responsible for
creating a context where code stands for its syntax rather than its normal
meaning.

• Second, there is the usual exposure of syntax objects as lists, symbols, and
other datums.

Building on these two, ‘quasiquote’ is implemented as a macro that translates its
body into a mixture of list-operations and quoted code pieces. For example, the
expression4:

‘(foo ‘(f (,g) ,,x) ,y)

will usually macro-expand to:
(list ’foo (list ’quasiquote (list ’f ’(,g) (list ’unquote x))) y).

Note how the expansion of this expression uses ‘quote’ to get symbol values
as well as literal quoted subterms. This is just for optimizations: in fact, using a
quasi-quotation macro, we can do with only list constructors and a primitive facility
to quote identifiers as symbol values; eliminating the need for the proper quotation
usage of ‘quote’. In this example, ‘’(,g)’ would be replaced with ‘(list (list

’unquote ’g))’. Notice that this resolves the exponential user-code problem, but
still an exponential blowup happens during evaluation, since the expansion has the
full (exponentially big) form. This is the approach that is used by CamlP4 [25]: a
certain input token causes the parser to read an expression and emit constructor
code that generates the expression syntax rather than the expression itself.

4‘‘x’ stands for ‘(quasiquote x)’ and ‘,x’ for ‘(unquote x)’
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Indeed, this approach can be used with any representation, even flat strings
or Gödel numbers: all we need is a preprocessing facility that is powerful enough
to both encode and decode syntax representations. The only news here is shifting
such code from being a required piece of functionality (a ‘parse’ function and its
reverse), into the user-interface so the system never deals with unparsed data. The
preprocessor (and a matching display mechanism) abstract over the actual repre-
sentation, which makes its choice independent of the actual user-visible mechanism.
We should, however, consider the mental price of a complex implementation which
would result from inappropriate flat representations, the robustness price that will
be noticeable if the resulting environment is bug-prone, and the convenience (and
resource savings) of an efficient representation.

In Nuprl, the editor fills the role of such preprocessing via display forms and the
structure editor. Regardless of the actual syntax representation we choose to work
with, we should use these facilities to at least imitate quasi-quotation, allowing the
desired intermix of quotations and descriptions. Theoretically, even the recursive
data type approach could be made usable with such display forms, except that it
would be hard to implement and still suffer from the discussed problems.

A generic parser for a language needs minor modifications for using this ap-
proach: say that we have a ‘parse’ function that reads in text and returns some
abstract syntax object. We wrap it in a new ‘qparse’ function that

• scans the input for quotation marks and invokes itself recursively on their
contents increasing a quotation-level flag,

• returns the same result as ‘parse’ if the quotation level is zero, or converts
the parsed result into a parsed form of the constructors that generate the
syntax if the level is more than zero (repeating for each level).

For example, when reading ‘a << b+1 >> c’, ‘qparse’ will invoke itself recur-
sively to read the ‘b’, and instead of returning a ‘b+1’ identifier syntax object,
it will return the syntax for generating such an object (e.g., the syntax of a
‘addition(id("b"),num("1"))’ expression).

A more important point in all this is that if we implement such preprocessing
over some existing syntax, it is extremely easy to come up with an additional
markers that switch the quoted level down instead of up, thereby giving us instant
quasi-quotations functionality. Modifying the above input to ‘a << $b$+1 >> c’
will now return ‘addition(b,num("1"))’. This implementation technique is used
extensively in CamlP4. Furthermore, if there is a syntactic representation for
the operations for shifting quoted levels, then we get the ability to use arbitrary
quotation levels.

The simplicity of using quasi-quotes and matching unquotes comes from their
natural view as templates with holes to be filed. A very brief experience with these
is enough to get convinced by their usefulness. It is therefore desirable to achieve
such convenience when dealing with reflected Nuprl syntax.
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(module opshift mzscheme

(define-syntax opshift-app

(syntax-rules ()

[(_ ’op x ...) (list ’op x ...)]

[(_ x ...) (#%app x ...)]))

(provide (all-from-except mzscheme #%app)

(rename opshift-app #%app)))

Figure 3.2: Operator Shifting in PLT-Scheme

3.3.7 Operator Shifting and Quasi-Quotations

The technique of operator shifting is particularly suitable for mixing quotations
and descriptions in a way that is almost as easy as using Scheme’s ‘quasiquote’
special form. This is quite obvious given the way a quotation is constructed us-
ing operator shifting — the term must be recursively traversed and all operators
shifted; if some operator in the resulting structure is left unshifted, it keeps its
usual meaning. A quick Scheme simulation can clarify this: Figure 3.2 contains
a simple PLT-Scheme module that extends application expressions with ‘shifted’
function symbols denoted by a quoted identifier. As an example of using this, the
expression

(’+ 1 (’* ’2 ’x))

evaluates to (represents)
(+ 1 (* 2 x)).

Note that shifted operators are syntactic constructors: they operate on, and return
syntactic values. Also note that this code works for multiple quotation levels:

(’’+ 1 (’’* ’’2 ’’x))

evaluates to
(’+ 1 (’* ’2 ’x)).

Now, if the ‘x’ symbol was not quoted, it would have the same meaning as a
variable reference. This holds for operators as well,

> (define (add1 exp) (’+ exp ’1))

> (’* ’2 (add1 (’- ’x ’y)))

(* 2 (+ (- x y) 1))

which is equivalent to the following conventional Scheme code:

> (define (add1 exp) ‘(+ ,exp 1))

> ‘(* 2 ,(add1 ‘(- x y)))

(* 2 (+ (- x y) 1))

It is also evident that this representation is efficient: quoting ‘(+ 1 2)’ three
times requires a constant price for each element:



44

(’’’+ ’’’1 ’’’2),
which is not as good as a using contexts:

’’’(+ 1 2),
but much better than an exponential blowup such as:

(list ’list

(list ’quote ’list)

(list ’list (list ’quote ’quote) (list ’quote ’+))

(list ’list (list ’quote ’quote) (list ’quote ’1))

(list ’list (list ’quote ’quote) (list ’quote ’2)))

Finally, note that the shifted operator representation is naturally visualized
by using a quotedness-level indicator color. This will be useful for implementing
a user interface that is as provides an easier interface than Scheme’s quasi-quote
mechanism when used in an interactive structure editor. For example, compare
this example from a proof that will be presented in Chapter 6 (using underline
instead of colors):

subx(subx(t;r); e)= subx(subx(t;e); subx(r;e))

and the way that this would look if we had used a Scheme-like quasiquotation
contexts:
subx(q(subx(uq(t); uq(r))); e)=q(subx(uq(subx(t;e)); uq(subx(r;e))))

3.4 Operator Shifting Options: Dealing with Bindings

Of all options that were discussed so far, operator shifting seems like the most
convenient solution, and therefore it is the chosen implementation approach. For
this, a new parameter family of natural number values is defined and used for
quoted terms: ‘rquote’5. Plain terms are considered as implicitly holding a zero
‘rquote’ value; when a term is shifted, we simply add an ‘rquote’ parameter
with a value of one, and when a shifted term is shifted again, the parameter
value is increased. This plays well with Nuprl: as described in the beginning of
this chapter, a term’s meaning is determined by its signature (see Section 3.2.1),
which contains its parameter values — so a shifted term has a meaning that is
distinct from its unshifted form, and since these terms are not primitive terms
and not user-defined abstractions, they are considered canonical value terms by
default. Furthermore, we benefit from other term related functionality that uses
term signatures to identify terms. For example, it is possible to specify display
forms for shifted terms of a specific operator id and make them display in some
unique way. The fact that we use a new ‘rquote’ parameter family ensures that
shifted operators are genuinely new — it was impossible to have such terms before

5‘quote’ was already used in Nuprl, so we choose ‘rquote’ as a mnemonic for
‘reflective quote’.
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this extension, so there is no chance of having accidental terms that now have a
different meaning6.

Before we discuss the additional implementation details, there is still a question
that requires an answer: what shall we do with bindings of shifted operators?

At first, it seems reasonable to materialize binding names. This is similar
to Scheme quotations, where a quoted expression has concrete binding names:
‘(lambda (x) x)’ has the same semantics as ‘(lambda (y) y)’, but the corre-
sponding quoted expressions are obviously different. This happens as a result of
the representation of identifiers and quoted identifiers: the former are variables
which are used only to connect binding positions and bound occurrences — the
name ‘x’ in ‘(lambda (x) x)’ has no significance except for tying it to the (single)
bound instance. Quoted identifiers are, in contrast, actual values, that can be used
in any way. There are several indications of the very different nature of these two
kinds of objects:

• First, in the current Scheme community, it is common to refer to ‘identifiers’
as the name for syntactic variables, and to ‘symbols’ as the plain values. It
is also interesting to note that the Lisp community has a different approach
to global bindings and to macros7, and ‘symbols’ are the common term for
both cases.

• The identifier—symbol difference is encouraged by hygienic macro imple-
mentations. These systems typically deal with bindings by hanging more
information (a ‘color’) on symbols that are bindings, and use it do distin-
guish bindings rather than rely on their names.

• In fact, the whole issue of hygienic macros can be viewed as trying to com-
promise the concrete simple symbol view and the identifier view. Instead of
‘defmacro’, we get ‘syntax-rules’ which specifies rewrite rules, and identi-
fiers need not be reified as concrete symbols. It can be claimed that Scheme’s
reflection is lacking in that bindings are not really reflected, and facilities that
support hygienic macro compensate for this deficiency.

In Scheme, an expression’s binding structure is determined implicitly by the
special form that is used: primitive forms like ‘lambda’ and ‘let’ have their bind-
ings at known locations, and user defined macros have binding positions that are
determined by their expansion into primitive forms. With Nuprl terms, however,
we face a different situation: terms have an explicit, uniform structure for bind-
ings, making the binding structure part of a term’s ‘binding shape’. This has a
major effect on the way bindings are treated when shifting operators: concrete,

6In contrast to ad-hoc mechanisms like using a new name for shifted operator
ids.

7Use symbol properties for global bindings; use plain ‘defmacro’ instead of
hygienic macros, and use un-interned symbols in macros: symbols that have a
unique identity regardless of their actual name.
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Scheme-style quoting can only be achieved at a high price — the binding structure
of a term and its shifted representation must be different. This is the same situa-
tion we have in Scheme (quoted terms have different binding structure: they never
bind), but in Nuprl this difference is much more dramatic since bindings have a
dedicated place in the syntax. This is demonstrated in the following section.

3.4.1 Concrete Bindings

Let us consider using concrete binding names. To quote a term that contains
bound variables such as ‘λx.x+ 1’, or in a more verbose form:

lambda(x.add(x;1)),
we need to shift all operators by adding an ‘rquote’ parameter (marked as ‘q’):

lambda{1:q}(x.add{1:q}(x;1)).
This is not complete — bound variable occurrence and the integer are also terms
that need to be shifted:
lambda{1:q}(x.add{1:q}(variable{1:q,x:v}();natural_number{1:q,1:n}())),
but to reduce verbosity, we will use the same shorthand notation for integers and
variables, but underline them when they are shifted:

lambda{1:q}(x.add{1:q}(x;1)),
we can further use this notation to show that any operator id is shifted:

lambda(x.add(x;1)),
and since punctuations are part of the syntax of terms, we underline additional
characters that are associated with shifted operators:

lambda(x.add(x;1)).
Now we get to the binding: we want concrete access to the variable name, some

value that we can compare with the quoted variable name ‘x’ which is already a
concrete value (it is a canonical form). The binding position cannot be shifted
since as described above, it is a simple string rather than a term. This means
that we need another (“binding”) instance of ‘x’ in the quoted term, and that the
existing binding should be removed, for example:

lambda(x; add(x;1)).
The shape of the term has changed now — it no longer has the binding structure
that it had before it was shifted. Specifically, we lost the binding structure infor-
mation, for example, the result is ambiguous since we will get the same result if
we shift the term ‘lambda(x; add(x;1))’.

To make this a proper term representation, we therefore need to add the binding
structure information back into shifted operators. For example, we can decide that
a shifted operator has all of its bindings in concrete form in the first places, and
that there is another parameter value that holds the arity of the original term as
a list of non-negative integers. The general rule would be that shifting

opid{v:f,...k}(x,...m.t;...n)
yields

opid{1:q,[m, ...n]:a,v:f,...k}(x;...m;...n;t;...n).
This change in structure is not trivial, it requires a translation step that can
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be considered as some form of encoding, it requires its reverse as some form of
parsing, and quoted terms are very different than the terms they stand for. In
short, this is simply using terms as a data structure that encode terms in an
indirect manner. In addition to the necessary complexity that is involved, when we
get to the semantic relation between terms and their quoted forms, we will need yet
additional functionality to deal with bindings — namely alpha-equivalence related
functionality. If we choose this strategy, then we might as well make it even more
explicit and put the arity information as the first subterm, we can use a generic
‘quote’ operator id and have the string and the parameter/value list as additional
subterms, and this effectively throws us back to the new data-type approach which
is undesirable.

This flaw stems from the fact that it diverges from the principle of direct
reflection: instead of exposing the term structure, we encode it in a way that
requires extra machinery.

3.4.2 Abstract Bindings

To rectify this situation, we consider leaving binders as they are when a term is
shifted. Going back to the above sample term, ‘λx.x+ 1’, we shift it in the same
way until we reach

lambda(x.add(x;1)).
If we now decide to keep the ‘x’ binding position as is, then we need to change its

bound instance back to a plain variable instance — otherwise we get a binding name
that does not bind any instance, which clashes with Nuprl’s semantics. Variable
terms in Nuprl look like other terms, but they have a special status as they are
linked to a binder that forms their scope. For example, when a binding name is
renamed, all included variable subterms that are bound occurrences of the same
name are renamed accordingly. In addition, we said that Nuprl assumes that
subterms can always be substituted by equal subterms, but this does not hold for
variable terms, since free variables are meaningless in the system.

The term that we now have,
lambda(x.add(x;1)),

is therefore broken: there is no relation between the binding position and the bound
variable. We might try to fix this by treating bound variables as such regardless
of being shifted or not, but then shifted bound variables are no longer concrete: it
should not be possible to use the name of such a variable since renaming should
not change the semantics of terms.

The approach we use to address these problems is to simply leave both binding
positions and bound variables unchanged when a term is shifted. Shifting the
original sample term will therefore yield:

lambda(x.add(x;1)).
The semantic implications of this representation are extremely important: we get
an abstract representation of syntax instead of a fully opaque concrete structure.
This leads to the semantics being defined using substitution functions as the main
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building blocks, which lead to the core of this work. This will be thoroughly
discussed in the following chapter.

The most obvious advantage of this shifting scheme is that it is as close to
direct reflection of terms as we can get, making it follow the general principles
laid out in the previous chapter for favoring exposure of internal functionality over
re-implementation. Terms are quoted as shifted that have the exact same binding
structure, and more importantly, bindings of shifted terms are the same bindings
used for unshifted terms. The only operation that is needed when shifting and
unshifting terms is to set the ‘rquote’ parameter value. We immediately benefit
from Nuprl’s extensive term functionality — most notably is substitution: since
shifted terms have normal bindings, Nuprl will avoid name captures, use consistent
renaming based on the original names etc.

In fact, it seems that the only disadvantage of this approach is losing the
ability to handle concrete syntax, in particular, we cannot use it to play with
explicit names. As we shall see, this is not a problem, and we do not lose any
expressiveness.

3.5 Technical Details

The design decision that is made at this point is to indeed use operator shifting
with abstract bindings for term representations. We now briefly describe the actual
implementation of this representation and some of the related technical points.
Each of the following subsections corresponds to a piece of the implementation.

First of all, as said above, using direct reflection has its expected benefits.
Substantial functionality that is already part of the system will deal with shifted
operators in the same way, and since it is the same code that deals with unshifted
terms, we are automatically guaranteed that the behavior on all levels is fully
consistent. The implementation therefore contains only the minimal code that is
required to establish shifted terms, and related user interface functionality. For
example, we do not need to implement anything that deals with bindings, or to
construct and access terms.

3.5.1 The ‘rquote’ Parameter

The implementation consists of code written in Lisp, ML, and a Nuprl theory file.
The Lisp part is responsible for two things which must be implemented at the
system level: the addition of the ‘rquote’ parameter and extensions to the display
mechanism. A very small part of the code implements the ‘rquote’ parameter:
one definition adds the parameter type as a container for non-negative integer
values, and a few more are used as new ML primitives to deal with constructing
and destructing ‘rquote’ values.

There is an implementation assumption that is made at this level and propa-
gates to the ML code as well: an term is shifted only if it its first parameter is an
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‘rquote’ which determines its quotedness; and unshifted terms do not have such
a parameter. This is required so that unshifted terms have the same signatures as
they used to have, allowing existing code to work unmodified.

3.5.2 Display Enhancements

We have already seen that using quotes and quasi-quotes expressions in Scheme is
not a necessary feature, yet it makes dealing with syntax an order of magnitude
easier. This is mainly due to making it as close to proper quotations as possible: a
quoted expression contains a pictorial version of the expression it represents. Our
quotation representation is simple to specify and work with, but it is also important
to make it as accessible as possible for users. For this, we wish to visualize quoted
terms in a way that strongly relates them to the term they stand for — make them
display the same as the original terms but using a different color to indicate the
quotedness of terms.

The first step in achieving this is extending the windowing user interface with
the capability to show text in different colors. Nuprl uses a simple (and quite old)
xlib-based interface: the foundation of this interface is the ability to display ar-
rays of characters as interactive windows, working with terms goes through several
processing steps which eventually generate such an array that Nuprl users work
with via the windowing system. To enable colored display of terms, this funda-
mental part of the system is extended so it is possible to color text. This is a
rather technical extension: character arrays contain 8-bit values that are ASCII
with additional mathematical symbols, and our extension makes it use higher bits
to specify an index into a vector of predefined colors.

This extension can be further used in the future to account for additional font
properties (e.g., super/sub-script, boldness, etc).

3.5.3 Display Forms

The most complicated part of the Lisp part of our implementation deals with
Nuprl’s term rendering engine. We extend it, as sketched above, to visualize shifted
terms just like their unshifted versions but using a different color. Considerable
effort has been invested on what seems like a technicality, but to reiterate the
motivation: a good interface that involves an almost proper quotation (one that
has a direct pictorial relation to the quoted syntax) is essential for effective and
fruitful interactions.

To display a term, Nuprl follows these steps:

1. find a matching display form object (usually from the library) based on the
term’s signature, use a default display form if none found;

2. combine the term with the display form in a recursive process that matches
content holes in the display form with subparts of the term (subterms, bind-
ings, parameters, or operator id), the result of this is called a display tree;
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3. process the display tree (destructively) according to layout elements of the
display form, inserting newlines and indentations so that the term fits the
current window width, resulting in a text tree which still has a connection to
the original term and the selected display form,

4. convert the result to a rectangular string array that is finally visualized in
the interaction window.

Note that terms are the only objects that are displayed, since Nuprl objects are
all terms — the same generic process is used to display rules, definitions, sequents,
and even user-interface elements like buttons.

Every step in this process is modified in some way to implement visualization
of shifted terms:

1. when searching for a display form object for a shifted term, the extended
system will first do the same search as for all terms and if no display form is
found — if this search succeeds then we have a shifted term that has its own
display form defined so it is used, otherwise, repeat the search without the
‘rquote’ parameter (which always succeeds since there is always a default
display form that can be used) and modify the resulting display form with
quotedness-level mark objects around text that belongs to the display form
and parameter slots8;

2. the code that combines the display form with the term into a display tree
is not really modified, but since it uses the results of the previous step, the
term that gets used might be different than the original term (it might not
have an ‘rquote’ parameter);

3. then, turning the display tree to a text tree is modified: the display tree
reflects the term structure that is visible on the tree — specifically, it has a
pointer to a term object which is the term that is now being displayed —
the change is that the quotedness level of the corresponding term is taken
into account and the output is now a text tree that holds character codes
(‘ichars’) that have the character index in the lower 8 bits and higher bits
hold the quotedness level of the responsible term;

4. finally, the back end part that visualizes character arrays is modified to use
different colors to indicate quotedness, as described above.

There are a few additional modifications that are needed, for example, the mech-
anism that matches nested terms to determine whether parentheses are necessary
is modified to ignore quotedness levels.

The bottom line effect of all this is that quoted terms are displayed exactly as
their normal versions but in a different colors according to their quotedness level

8A display form consists of pieces of text and layout directives, as well as slots
for values that are found in the term: parameters, bindings, and subterms.
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(unless a specific display form is defined for the quoted terms). But there are yet
more issues to consider.

Finite Number of Distinct Colors

The first problem is that there are a finite number of colors to encode quotedness
level. This number can be arbitrarily high (by simply adding colors to the defined
color vector in the modified xlib interface), but this is limited to what is easily
visible: we do not want the difference between terms at different quotedness levels
to be indicated by a subtle change like a deeper shade of blue!

The solution is therefore to implement an alternative indication system for
quoted text: we use a ‘<n:. . . >’ wrapper around text that originate from an n-th
level quoted term. If the quotedness level of a term exceeds the number of colors
in the color vector, then this alternative is used to indicate quotedness instead of
color shifting. This looks a little too verbose to be read conveniently off the screen,
but there are plenty of colors to use (12) before the system resorts to this solution
— such quotedness levels are unlikely to be needed, surely not for terms that are
used interactively.

Visualization for Printouts

Printouts present another problem: Nuprl is able to produce printed mathematical
text via LaTeX, and the result is often used in papers, books, and presentations
— using colors for printouts will therefore not work. The solution is to implement
yet another visualization scheme: when a display tree is converted to a text tree,
the normal behavior is to use bits higher than the first 8 bits to indicate a color
index. When we render terms for printouts, we switch to a mode where a color
index is translated into LaTeX macros that use underlines to indicate the index.
This is the same notation that is adopted throughout this text.

Customization

The default behavior is determined by a Lisp parameter. This parameter indicates
the current rendering mode that is used for shifted terms. It is one of the following
symbols:

‘normal’: default behavior as described above.

‘verbose’: using textual markers (this is the strategy that is used when the quot-
edness level is too high).

‘print’: used to output the LaTeX macros as described above when rendering
terms for printouts.

‘nil’: standard Nuprl behavior, no special treatment for shifted terms.
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The default ‘normal’ value can be changed to always get some of the other behav-
iors.

Additional Usages

A pleasant side-effect of the display extensions is that colors can be used for other
purposes. The color marker display commands are exposed as elements that can be
used in display forms to put colors around certain pieces of terms. For example, the
reflection theory file defines display forms for ‘hypertext’ and ‘hyperterm’ elements
which contain some text and some term respectively, and are highlighted using
color. Obviously, one has to be careful with such usage so it is not confused for
quoted terms. This can be easily solved, but was not found to be necessary so far.
Such usage is described in Section 6.1.

Coloring Bindings

Finally, dealing with bindings is, again, a point that needs careful consideration.
Display forms have ‘slots’ for various elements that come from the term that is

rendered: parameters, bindings, and subterms. Subterms are visualized using their
own display forms (which interact with the display form of the parent term, e.g.,
for precedence and for parentheses), but parameters and bindings are rendered by
the display form of the term they belong to.

So far, we have decided that:

• when a term is recursively shifted by quotation, binding positions stay the
same, and subterms that are bound variables are therefore kept unshifted;

• the operator id part of a visualized term, and other pieces of text that are
in its selected display form, use different colors to indicate different levels of
quotedness of the term.

Parameters are rendered by the term’s display form for a good reason: we view
them as attributes that belong to the syntax of their term. Indicating parameter
quotedness is no different — a quoted term represents some other term, including
its parameters, so it is natural to use the same color for a term’s name and for its
parameters. For example, to indicate a shifted ‘foo{1:n}’ term we write ‘foo{1:n}’,
and also for shorthand notation: a shifted ‘1’ is printed as ‘1’9.

We need to decide how to visualize binding positions10. Generally, binding
positions are similar to parameters — they are associated with their surrounding
term rather than the subterm; one technical reason for this is that the fundamental
building block that is used in Nuprl is a term rather than a bound-term. This is
not an arbitrary decision: the motivation is that terms can bind names, and not

9In Nuprl, this shorthand notation is implemented via a display form that omits
the operator id.

10A question that would not arise if we were using a concrete syntax.
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that some subterms happen to have bound variables. For example, in ‘λx.x+ 1’,
we consider the ‘λ’ to be a binding term — it will not make sense if it has more
or less subterms, or if it has more or less bindings11.

If we follow this similarity and render binders using the same approach that
is used for parameters, then a quoted ‘λ(x.x + 1)’ should be visualized as
‘λ(x.x+ 1)’. This is, however, highly misleading: the only meaningful property
of bindings is the way they connect binding positions with bound instances — and
‘λ(x.x+ 1)’ it. This property is fundamental enough that it is absurd to expect
it to make sense to humans.

A possible solution is to visualize this term as: ‘λ(x.x+ 1)’, which seems like
a reasonable rendering since quoting a term results in a uniform shift in color.
Implementing this visualization is a little tricky: before we convert a display tree
into a text tree, we scan the tree structure recursively keeping an environment
that matches bound names to their quotedness levels, and when we reach a vari-
able subterm we change it to have the quotedness level of the term that binds it.
However, this leads to ambiguity, confusing variables with quoted variables, for
example, evaluating the following term12:

apply(λ(var.λ(x.x+ var)); x)

yields
λ(x.x+ x),

but the two ‘x’s are different: only the second is actually shifted. If we now see
‘λ(x.x)’, we cannot know whether the subterm is a bound instance or a quoted
variable term.

The basic problem stems from a conflict between two desired properties :

1. Quoted terms should look the just like their unquoted versions — no addi-
tional characters.

2. When a term gets quoted we want to see a uniform color shift — no different
colors.

If we choose to color terms according to their actual quotedness, we get the first
property, but we break the second one since bound instances are not shifted. If
we choose the scheme that was just described, we get the two properties but at
the price of ambiguity which disqualified it — but we can fix things, by breaking
the first property. The idea is that quoted variable terms are not too common13,
yet they are the only source of confusion. So we change the way quoted variable
terms are displayed by prefixing a quote character to their rendering, making the
above computation be rendered as:

apply(λ(var.λ(x.x+ var)); ’x) → λ(x.x+ ’x)

11This is why the arity list of a term is part of its signature.
12Notice how this demonstrates the quasi-quote-like feature of operator shifting.
13In Chapter 4 we will see that quoted variables behave just like Scheme symbols.
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Indeed, the first property is violated since there are extra characters now, but this
might be a feature as quoted variable terms are very different from real ones.

An alternative visualization strategy is simple: instead of making bound in-
stances match binders by making them appear quoted, we go the other way and
make the binders appear unquoted. With this approach, binders are not treated
the same as parameters, instead, they are always shown the same way as unshifted
terms. This approach violates the second feature: quoting any term that has bind-
ings will not change all colors uniformly, but it is justified in that it shows exactly
what the underlying terms are.

This discussion has led to implementing several strategies, and let a user-
settable flag choose which one is used. This flag could be one of the following
symbols, demonstrated using the quotation of ‘λ(x.add(x;y))’:

‘simpler’: color terms according to their true quotedness, variables are treated
like parameters;
Example: ‘λ(x.add(x;y))’

‘simple’: similar to ‘simpler’ but show variables like unshifted parts;
Example: ‘λ(x.add(x;y))’

‘uniform’: color both binding positions and bound occurrences according to the
quotedness of the binding term.
Example: ‘λ(x.add(x;y))’

The ‘uniform’ option was used by default, but when the semantic account was
formalized, it became clear that quoting terms using real (abstract) bindings has
a major effect on the semantics, and that the ‘simple’ visualization is a better
choice. Eventually, it was kept as the only colorization approach.

3.5.4 Quote-Related Functionality

Miscellaneous quote-related functionality is implemented in ML. The only func-
tionality that is needed at the Lisp level is the addition of the ‘rquote’ parameter
type, and higher level operations are better left for ML. The design follows an
assumption that was already mentioned: an unshifted term has no ‘rquote’ pa-
rameter, and a shifted term has a single one which comes first.

The main part of this layer implements quote and unquote functions
(‘rquote_term’ and ‘runquote_term’ respectively). These would be written as
a straightforward recursive scan of input terms, but we need to avoid shifting vari-
able terms that are bound by shifted operators. Fortunately, Nuprl’s standard
ML library contains a ‘sweep_up_map_with_bvars’ function which maps a func-
tion recursively, collecting and passing the list of variable names that are currently
bound.

Notice that at the ML level, Nuprl users deal with concrete syntax, unlike the
abstract semantic level. The chosen quotation representation uses abstract vari-
able, but implementing a quote and an unquote function is done at the underlying
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Figure 3.3: Interacting with quoted terms using colors

concrete level. As we shall later see, this is similar to other systems that use
higher-order abstract syntax.

Due to the fact that these functions are implemented at the concrete meta-level,
they are not intended for users. Nuprl has a complex keyboard macro system that
is used to configure editor input. This macro system can call ML functions to
operate on the currently selected term. We add a few such macros that use the
‘rquote’ and ‘runquote’ functions to shift the current term up or down.

The ML implementation has additional quoted-term-related functions which
are used for evaluation hooks and for supporting a few rules. They are described
later.

3.5.5 Reflection Theory

Finally, the last part of our implementation is a Nuprl theory. This is where the
implementation is tied to its intended semantics. The fact that we are using direct
reflection is evident in that quoted terms are handled by the same mechanisms that
deal with unquoted terms — but, as discussed in the previous chapter, Nuprl’s
term implementation is operational in its nature, while we need more for Nuprl
to be able to use term representations in Nuprl’s user level. Missing from the
implementation are the formal properties of terms and term functionality. This
“semantical glue” is included in the reflection theory file, defining rules (axioms)
and derived theorems that formalize term properties.

The reflection library is described and included in Appendix B.1. It is described
in more details in Chapter 6.

3.6 Usage Sample

To demonstrate the way users interact with the system, we present a few screen-
shots in Figure 3.3.

(a) This is a picture of Nuprl ML ‘toploop’ window, after the term ‘λx.x+ 1’
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was entered.

(b) Selecting the whole term, and using the key combination that quotes it re-
sults in this state. Note that, as discussed above, the binding position is
not colored as quoted even though it comes from a shifted term, and the
corresponding bound occurrence is not shifted quoted.

(c) Selecting the addition subexpression and quoting it results in this term. The
problem is that the term that was quoted contained a free occurrence of
‘x’, so it was quoted — breaking the original binding structure. For such
situations, we have also added key bindings that can shift single term without
the recursive scan that quotes it with its subterms.

(d) This shows the previous term after it was fixed. Note that the meaning of
this term is not trivial: it is the quotation of a λ-function that returns an
addition expression with its argument as the first subterm and ‘1’ as the
second. In Scheme, using concrete syntax, this would be written as:

‘(lambda (x) ‘(+ ,x 1))

It should be clear now that using colors is as simple as using quasi-quotes in
Scheme. This is in contrast to the constructor approach of:

(list ’lambda (list ’x)

(list ’list (list ’quote ’+) ’x (list ’quote ’1)))

or, using some possible ML-like syntax:

lambda x. make_addition(x, make_number(1))

make_lambda("x",

make_application

(make_var("make_addition"),

make_var("x"),

make_application("make_number",

make_number(1))))

which is barely comprehensible.

(e) The same expression is displayed in the ‘verbose’ mode. This is a little
confusing (e.g., the ‘x’ occurrence is unshifted since it doesn’t have a direct
‘Q’ wrapper), and with some work could be displayed better, perhaps in a
more quasi-quote-like manner. This is not a practical problem though: 12
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levels of quotations are represented using colors, and it is highly unlikely
that more than four levels of quotation will ever be needed. (e.g., stating
the Gödel theorem requires three levels, and understanding it completely
requires four.)

(f,g) These two pictures show actual usages of quoted terms as syntax construc-
tors, (f) is an initial specification of a proof goal, and (g) is an abstraction
definition that uses term substitution14 with a quoted variable — as we shall
see, this is similar to using a Scheme symbol.

14One of the operations that are computed via hooks in the ML part of our
implementation. It will is discussed later.



Chapter 4
Semantics of Shifted Terms
In the previous chapter we have chosen a representation for syntax, we demon-
strated its practicality for users and its computational advantages, and outlined
implementation issues. It is obvious that our representation makes it possible to
quote all terms by a recursive process of adding an ‘rquote’ parameter to a term
and its subterms except for bound variable subterms, but we still need to clarify
the semantics of shifted terms.

This chapter will discuss the problematic issues that are involved, and present a
valid semantical account. The presentation is generic: it does not depend directly
on the specifics of Nuprl terms or on its type theory. We only need a simple term
structure (operator ids and bound subterms), and few assumptions and facts to
hold (e.g., the ones that are mentioned in Section 4.4.1).

4.1 Brief Review

Operator-denoting operators are called shifted operators: if an operator x denotes
the operator y, then x is called a shifted y, and will be typeset as y. For example,
‘a+ b’ denotes ‘c+d’ if a denotes c and b denotes d. The plus operator, ‘+’, denotes
a function that takes two integers and returns an integer, and its shifted version,
‘+’, denotes a function that takes two terms and returns a term. In the previous
chapter, we have discussed the advantages of keeping the same binding structure
when shifting a term — now the problem is what do we do with such operators:
for example, ‘∀x.P(x)’ is an operator that denotes a function taking a boolean or
propositional function and returning a boolean or a proposition (its syntactic form
is, of course, binding). (We use a ‘∀’ operator to avoid the confusion that would
result if a ‘λ’ term was used; note that Nuprl’s actual ‘∀’ operator takes another
argument for the type, e.g., ‘∀x:N.P(x)’.)

The obvious choice for the semantics of the shifted version, if we were to use a
concrete representation, would be a function, ‘all(x;P)’ that takes two expressions
as input values: one for the bound name and one for the body, and constructs
the concrete ‘∀’ term. We use an abstract syntax representation however, and
the semantics of our syntax representation requires using functions, making it a
higher-order abstract syntax [57]. Going in this direction, we get the usual benefits
of this approach over concrete syntax (or alternatives like de-Bruijn indexes), such
as specified by Pitts and Gabbay [59], as well as the benefits of direct reflection
that were discussed in Chapter 2. In particular, it allows us to retain the same
binding structure as the operator being denoted. For example, the single input
argument for ‘∀’ has the same binding as ‘∀’: it takes in a term-valued function as
an argument (a single-variable bound subterm).

We begin by asking what is the semantics of ‘∀’? The semantics of a concrete
shifted ‘∀’ is the trivial one given above, but the semantics for our abstract ‘∀’ is

58
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more subtle.
Note: we use an overline to indicate sequences and a way to index their ele-

ments. For example, x : Varn means that x is a sequence of n Vars, and that xi

is the ith element of this list; that is, x is a function from i : 1 . . . len(x) to the
ith element of x. This is essentially the same as the ellipsis notation that was
introduced in Section 3.1, only this is somewhat more convenient to use in bigger
formulas, in particular, we use the overline notation with simple sequences rather
than the general ellipsis notation capability of specifying more complex rewrite
rules. Also, we use only indexed functions to stand for these sequences.

4.2 Semantics of Shifted Operators

Since ‘∀’ is a binding operator, it takes a function as an argument. Our basic
requirement is that ‘F(t)’ be the result of the ‘All-Instantiation’ rule applied to
‘∀x.F(x)’ and ‘t’. This means that ‘F’ needs to be a substitution function. So the
semantics we adopt for ‘∀x.F(x)’ is that it denotes the ‘∀’ formula whose predicate
part is ‘F(u)’ and whose binder is u for some u — almost.

But which u? As usual we can avoid this question by using a higher-order
abstract syntax, and say that what is denoted is actually the α-equivalence class
of all such formulas where some appropriate u could be found. From this point
forth, we use ‘Term’ to refer to these α-equivalence classes rather than the concrete
terms.

Before going on to the technical parts, lets consider how we might reason about
this in the reflective logic. The first intuition is that proving that something is a
Term depends only on having a quoted operator ‘opid’ and on its subparts in a
simple compositional way:

` opid(v.b;...) ∈ Term
if v : Term ` b ∈ Term

...

This seems fine, but it fails with bound variables. For example, the following
can be proved:

` λx.if x= 0 then 1 else 2 ∈ Term
because x : Term ` if x= 0 then 1 else 2 ∈ Term

The premise line is trivial, but the conclusion is false, because the quoted λ-term
contains a function which is not a substitution function — it is not a “template”
function. In other words, there is no literally quoted term that this value stands
for; indeed, there is no way to unquote this term.

When inspecting this term, we can compare it to similar but valid terms to see
what went wrong with the suggested rule:

1. λx.if x= 0 then 1 else 2

2. λx.if x= 0 then 1 else 1
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3. λx.if x= 0 then 1 else 2

The two λ-terms are fine, because they’re built from substitution functions, and the
last one is a simple Term → Term function. The difference between these terms and
the previous one indicates what is wrong with the above rule: the bound variable
should not be used as a value. It is a binding that should only be used in template
holes, as there is no real value that this variable is ever bound to that can be used.
In the valid examples, the first one does exactly that: it does not use the bound
value except for sticking it in its place. The second one ‘almost’ uses the value,
but since the two branches are identical it is possible to avoid evaluating the test
term; therefore it can be evaluated without using it. The last one is not a Term
but a function on Terms, so it can use that value as usual.

The conclusion is that a bound variable can be used only as an argument of
a quoted term constructor. In other words, it can serve only as a value that is
“computationally inert”, much like universe expressions in Allen’s thesis [4]. This
is also similar to variables that are bound by Scheme’s ‘syntax-rules’ [44] — they
are template variables that can be used in syntactic structures only to build new
structures1. When put in this light, it seems that any attempt to get this property
in a proof fails. The lesson from this is: variables bound by quoted operators do
not behave like normal bindings in the sense that they do not provide any values
that are usable at the normal Nuprl level — a fact that is also true in regards to
universe expressions.

4.3 Term Definition

We take CTerms as concrete terms : the type of objects intended to be ordinary
syntax objects with binding operators, and concrete names (ignoring parameters
for simplicity). A more precise definition is given later, in Section 4.5. To define
the Term type, we also need to introduce a predicate, ‘is_subst’, which is used to
distinguish proper substitution functions. This predicate is defined in Section 4.6,
and it has specific rules which are introduced in Section 4.6.1.

As said above, we define Terms using CTerms and α-equality:

Term ≡ CTerm//α

Terms are constructed by shifted operators, which have the semantics of functions
that create Terms from Term substitution functions. For example, ‘λ’ is a function
that takes a single-argument proper substitution function and constructs a Term

1For example, in a ‘syntax-rules’ template of ‘((foo x) (bar x))’, the iden-
tifier ‘x’ is just a place holder that can be used to stick a value in a template; it
is not possible to inspect its value. This is why ‘syntax-rules’ is considered
part of a high-level macro language, strictly less powerful than a lower-level base
functionality that implements it.
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value:
λ : {f : Term → Term | is_subst1(f)} → Term

using ‘is_subst1’, which is a version of ‘is_subst’ that works with one argument
functions. In general, ‘is_substn’ is a predicate over Termn→Term. To simplify
things, we drop the n when the context makes it clear.

CVar is a subset of CTerm, which contains only atomic variable terms. Cor-
respondingly, Var = {{x} | x ∈ CVar}, therefore Var ⊆ Term. This is a set of
singletons since variables are α-equivalent only to themselves. Two assumptions
that will be used in the following text are that we have an infinite supply of distinct
variables in CVar (and therefore in Var) and that there is at least one closed CTerm
we can use.

4.4 Operations, Assumptions, and Facts

These are the operations that will be needed in the following text:

·� taking the α-equivalence class of an object.

·� choosing an element of an α-equivalence class. This is some function, such
as one that chooses the first available variable names using lexicographic
order.

·[·/·] standard capture-avoiding substitution on CTerms. It can be used to sub-
stitute multiple variables in one shot, provided that the number of supplied
terms matches the number of variables, which are all distinct.

·[[·/·]] substitution for Terms, which is defined using the above operations as:
b[[x/v]] = b� [x�/v�]�.

newcvar(·) returns a new CVar, i.e., newcvar(t) is neither free nor bound in t ∈
CTerm.

newvar(·) is similar to newcvar(·) but for Terms, defined as:

newvar(x) = newcvar(x�)� .

newcvarn(·) returns n new CVars, defined as:

newcvar1(x) = newcvar(x),

newcvarn+1(x) = (let v = newcvarn(x) in v, newcvar(v, x)).

newvarn(·) returns n new Vars, defined using newvar(·) in the same way as
newcvarn(·).



62

We use versions of these operations that are generalized to any lists and tuples
of input arguments in an obvious way. The newcvar(·) and newvar(·) operations are
further extended to functions by plugging in some closed dummy term argument
(that we name ‘0’) and using the result:

∀f : Termn→Term. newvarm(f) = newvarm(f(0n))

Below we will often justify things of the form a�= b�, by mentioning lemmas of
the form a =α b, without emphasizing the required transitions. Note that we use
the overline notation (introduced in page 59) extensively.

4.4.1 Important Assumptions and Facts

We now list several assumptions and derived facts about substitution — the as-
sumptions are not argued for, but we think that it is clear they are all true for
any reasonable definition of substitution (one that respects the usual term binding
structure); specifically, we trust Nuprl’s substitution to satisfy these assumptions.
This allows us to take substitution as given and avoid getting into the specifics of
an implementation. The assumptions and facts that are introduced here will be
used in the following text2.

?1 ∀x : Term. x = x��

?2 ∀x : CTerm. x =α x��
This fact is mostly used when nested in a bigger term, see ?4 below.

?3 ∀x : CVar. x = x��
because x ∈ CVar ⇒ x��= {x}�= x.

?4 ∀x1, x2 : CTermn, v : CVarn, b : CTerm. x1 =α x2 ⇒ b[x1/v] =α b[x2/v]
Note that using this fact, ?2 can be used in a subterm of an α-equality, since:
∀t, x : CTerm. t =α t[x��/x]

?5 ∀b1, b2 : CTerm, t : CTermn, v : CVarn. b1 =α b2 ⇒ b1[t/v] =α b2[t/v]
Note that v is the same on both sides (free variables in the body are not
changed).

?6 ∀t : CTerm, x1 : CTermn1 , x2 : CTermn2 , v1, u : CVarn1 , v2 : CVarn2 .
the sequence v1, v2 are distinct & u are distinct, not free in t, x2

⇒ t[x1, x2/v1, v2] =α t[u, x2/v1, v2][x1/u]
This is simple to verify:

t[u, x2/v1, v2][x1/u]

=α t[u[x1/u], x2[x1/u]/v1, v2] (any of u do not occur free in t)

=α t[x1, x2[x1/u]/v1, v2] (u are distinct)

=α t[x1, x2/v1, v2] (any of u do not appear in x2)

2We use “?N” to refer to fact N .



63

Note that it is easy to show that such a u exists by choosing it as:
let u = newcvarn1(t, x2, . . .)

?7 ∀t : Term, x1 : Termn1 , x2 : Termn2 , v1, u : Varn1 , v2 : Varn2 .
the sequence v1, v2 are distinct & u are distinct, not free in t, x2

⇒ t[[x1, x2/v1, v2]] = t[[u, x2/v1, v2]][[x1/u]]
Again, verifying this is simple: from ?6 we know that

t� [u�, x2�/v1�, v2�][x1�/u�]�= t� [x1�, x2�/v1�, v2�]�,

so:

t[[u, x2/v1, v2]][[x1/u]]

= t� [u�, x2�/v1�, v2�]�� [x1�/u�]� (·[[·/·]] definition)

= t� [u�, x2�/v1�, v2�][x1�/u�]� (?2, ?5)

= t� [x1�, x2�/v1�, v2�]� (by the use of ?6 above)

= t[[x1, x2/v1, v2]] (·[[·/·]] definition)

A similar note holds here: it is easy to show that such a u exists if it is chosen
as:

let u = newcvarn1(t�, x2�, . . .�)�= newvarn1(t, x2, . . .)

?8 ∀c : CTerm, v, u : CVarn, s, t : CTermn.
u are not free in c except for v ⇒ c[s/v][t/u] =α c[s[t/u]/v]

Note that the v exception is usually not needed.

?9 ∀c : Term, v, u : Varn, s, t : Termn.
u are not free in c except for v ⇒ c[[s/v]][[t/u]] = c[[s[[t/u]]/v]]

This is easily shown by ?2 and the definition of ·[[·/·]], using the previous fact.

A general intuition that arises from these facts and others, is that Term values
are indeed isomorphic to CTerms: as long as there are no “dirty” concrete tricks
played by using names of bound variables, facts that hold for CTerms will have
corresponding versions for Terms.

4.5 Definitions of Shifted Operators

In the general case, a shifted operator id, ‘opid’, is defined as a function that takes
in some substitution functions (verified by ‘is_subst’) of some arities, and returns
a Term value. This is done in the obvious way: each of the substitution functions is
used to plug in new variables; then the results, together with the chosen variables,
are all packaged into a CTerm; and finally, the α-equivalence class of this result
produces the resulting Term. The actual representation is not too important:
we use the direct reflection mechanism that was introduced in Chapter 3, so the
representation that is used here is only for the formal account. We need some
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new data types for this, and the simple pairs and lists approach could be used, for
example:

λ(f) = 〈‘λ’, [〈[newvar(f)�], f(newvar(f))�〉]〉�
but this gets too complex for our purpose, e.g., making analysis hard since we need
to distinguish pairs that stand for a bound term, a term, or a pair of terms. If
were using the new data type approach for the actual implementation, we would
probably use the same representation for the formal account, as was done by Aitken
[3].

Instead, we use some new types that are not fully specified, requiring only a
few properties and some abstract operations. Instead of a full specification of these
types, we use them as given and specify only the corresponding constructors. As
said above, we use indexed functions instead of tuples or lists for sequences, since
they make later parts of this account somewhat easier. The new types that we
now need are:

• OpId will be used for term name labels;

• BndCTerma is a bound CTerm (where a : N) — packaging a CTerm with a
distinct CVars.

BndCTerms are created with a mkBndCTerm constructor3:

mkBndCTerm ∈ a : N → (1 . . . a → CVar) → CTerm → BndCTerma

An alternate syntax for mkBndCTerm uses our sequence notation, and can be more
natural when a is known:

mkBndCTerm(x, t) stands for mkBndCTerm(len(x), (λi. xi), t)

which is used as if the function accepts a tuple rather than a size and an indexed
function:

mkBndCTerm ∈ CVara → CTerm → BndCTerma

CTerms are created with mkCTerm:

mkCTerm ∈ OpId → n : N
→ a : (1 . . . n → N)

→ (i : 1 . . . n → BndCTermai
)

→ CTerm

Note that we assume OpId exists and values of this type are accessible in some
(unspecified) way. Again, an alternate syntax for this uses sequence notation that
can be more natural when n, a are known is:

mkCTerm(o, [mkBndCTerm(x1, t1), . . . , mkBndCTerm(xn, tn)])

3We use the notation x : A → Bx to denote functions on A such that ∀x :
A. f(x) ∈ Bx, a type which is more conventionally denoted by Πx : A. Bx.
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which stands for

mkCTerm(o, n, (λi. len(xi)), (λi. mkBndCTerm(xi, ti)))

The next thing we need is a type which is the subset of Termn→Term functions
that are substitution functions (using the ‘is_subst’ predicate, defined below):

SubstFuncn = {f : Termn→Term | is_substn(f)}

Now we have reached the point where we can finally define a mkTerm constructor
for Terms, one that is based on mkCTerm. Its type is:

mkTerm ∈ OpId → n : N
→ a : (1 . . . n → N)

→ (i : 1 . . . n → SubstFuncai
)

→ Term

and it is defined as:

mkTerm(o, n, a, f) =
mkCTerm(o, n, a, λi. let x = newvarai

(fi) in mkBndCTerm(x�, fi(x)�))�

The alternate syntax for this is:

mkTerm(o, [〈a1, f1〉, . . . , 〈an, fn〉])

which stands for

mkTerm(o, n, λi. ai, λi. fi) = mkTerm(o, n, a, f)

Shifted operators can now be defined as Term constructors which use mkTerm

with some fixed operator name and arity list. For example, ‘λ’ and ‘Σ’ are defined,
using the alternate syntax notation, as4:

λ(f) = mkTerm(‘λ’, [〈1, f〉]), Σ(f, g) = mkTerm(‘Σ’, [〈0, f〉, 〈1, g〉])

Note that since mkTerm is curried, a shifted operator is made by specifying the first
three inputs: mkTerm(o, n, a); this information corresponds to term signatures in
Nuprl.

In addition to the assumptions and facts that were introduced in Section 4.4.1,
we further assume the following:

?10 We specify one way that substitution interacts with CTerms: for all i, k, if it
is true that

if vk is free in ti then none of xi are free in either rk or vk

4These definitions use ‘λ’ and ‘Σ’ as functions, not as operator ids.
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then5,

mkCTerm(o, n, a, λi. mkBndCTerm(xi, ti))[r/v]

=α mkCTerm(o, n, a, λi. mkBndCTerm(xi, ti[r/v]))

To see why it is true using any reasonable definition of substitution, it is simpler
to first see that a precondition that could be used is that none of xi occur free in
r, v; this is too restrictive for our future needs but the explanation is somewhat
similar.

First of all, if vk is not free in ti, then there is no need for any restriction, since
it does not have any effect on the result. Now, if it does appear in ti, then it
is enough to have two guarantees for the above to remain an α-equality: (a) if
none of xi are free in rk then capture by xi is impossible; (b) if vk is not in xi,
then none of the vk will get “screened out” in the body.

• It seems that a fact similar to this assumption also holds for Terms — that if
none of xi occur free in r, v, fi(0ai) then:

mkTerm(o, n, a, λi. fi)[[r/v]] = mkTerm(o, n, a, λi. λz. fi(z)[[r/v]])

However, it turns out that this fact is incorrect, but the concrete version is the
only one we need.

?11 A simple fact about renaming bound variables:

∀xi, zi : CVarn. xi are distinct & zi are distinct & zi are not free in bi

⇒ mkCTerm(o, n, a, λi. mkBndCTerm(xi, bi))

=α mkCTerm(o, n, a, λi. mkBndCTerm(zi, bi[zi/xi]))

4.6 Defining ‘is subst’

A function is a substitution function iff there exists an appropriate substitution
that it is equivalent to. We describe this first using CTerms, since we know how
substitutions work on them:

is_substn(f) ≡ ∃b : CTerm. ∃v : CVarn. ∀t : CTermn. f(t�) = b[t/v]� (4.1)

Note that f returns a Term which is an α-equivalence class, so the above is an
equality that compares two such classes rather than an α-equality over concrete
terms. This should be equivalent to directly using a Term argument for f :

is_substn(f) ≡ ∃b : CTerm. ∃v : CVarn. ∀r : Termn. f(r) = b[r�/v]� (4.2)

We show that ∀b : CTerm, ∀v : CTermn, the two sub-expressions are equivalent.

5Note that the α-equality is needed only because the substitution definition
might introduce arbitrary renamings.
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(4.1) ⇒ (4.2) Instantiate t with the chosen r�:

f(r) = f(r��) (?1)

= b[r�/v]� (4.1)

(4.2) ⇒ (4.1) Instantiate r with t� and we get:

f(t�) = b[t��/v]� (4.2)

= b[t/v]� (?2?4)

We can now try to use a version that uses only Term types (no CTerm types),
using α-terms substitution, ·[[·/·]]:

is_substn(f) ≡ ∃ba : Term. ∃va : Varn. ∀ta : Termn. f(ta) = ba[[ta/va]] (4.3)

and verify that this is indeed equivalent to the other two definitions:

(4.2) ⇒ (4.3) Let ba = b�, va = v�, pick some ta, and instantiate r with it:

f(ta) = b[ta�/v]� (4.2)

= b�� [ta�/v��]� (? see below)

= b�[[ta/v�]]

= ba[[ta/va]]

(?) is true because of ?2 (with b), ?3 (with v), and ?5 (with x1, x2, t, v).

(4.3) ⇒ (4.2) Let b = ba�, v = va�, pick some r, and instantiate ta with it:

f(r) = ba[[r/va]] (4.3)

= ba� [r�/va�]�

= b[r�/v]�

4.6.1 The ‘is subst’ Rule

Now that we have a reasonable definition of ‘is_subst’, we define key rules that
are used to prove an ‘is_subst’ property, which is needed to verify that something
is a proper Term. These rules are quite simple — there are only two cases:

• H ` is_subst(x. xi) where 1 ≤ i ≤ len(x)

• H ` is_subst(x. opid(y. b; ...)) where opid is some shifted opid
if H ` is_subst(x, y. b)

...
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These two rules are sufficient for any substitution function, which in turn is
sufficient for proving the validity of any shifted term value that is a valid quotation.
Proving t ∈ Term is achieved by showing is_subst(. t). For example, to prove
that ‘foo(x.bar(1;y.x))’ is a Term:

• we begin with is_subst(. foo(x.bar(1;y.x))),

• ‘foo’ is shifted so using the second rule we continue with
is_subst(x. bar(1;y.x)),

• again, ‘bar’ is shifted so we now have two subgoals for the two subterms:

– is_subst(x. 1): ‘1’ is shifted and it has no subterms so it is trivially
true using the second rule,

– is_subst(x, y. x): the function in question is a simple projection func-
tion, so we’re done using the first rule.

Of course, this is not a complete set of rules, since there are more cases where
we have general Term expressions that are not constants but contain a mixture
of shifted operators and descriptions. In such cases the H context is used with
standard Nuprl rules.

4.6.2 Justifying the ‘is subst’ Rules

First Rule

The validity of the first rule amounts to this:

∀n, i : N+. i ≤ n ⇒ is_substn(πi
n)

which is easily verified. Choose distinct v = v1, . . . , vn variables, and let b =
πi

n(v) = vi. Then, ∀t : Termn. πi
n(t) = vi[[t/v]] is true by the definition of πi

n, of
·[[·/·]], and the distinctness of v.

Second Rule

Our main result will be formulating and proving the validity of the second rule:
H ` is_subst(x. opid(y. b; ...)) where opid is some shifted opid

if H ` is_subst(x, y. b)
...

but this formulation requires some preparation. First, recall that the type of
mkTerm is:

OpId → n : N → a : (1 . . . n → N) → (i : 1 . . . n → SubstFuncai
) → Term
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Note that, as said earlier, a shifted operator is the result of applying mkTerm on the
first three arguments, since they define the operator symbol and the list of arities
it expects. For example:

λ = mkTerm(‘λ’, 1, 〈1〉) Σ = mkTerm(‘Σ’, 2, 〈0, 1〉)

So, a shifted operator has the following type: for some given o, n, and a, it is a
constructor that creates an o Term out of n substitution functions with the given
a arities:

mkTerm(o, n, a) : (i : 1 . . . n → SubstFuncai
) → Term

Remember that the current goal is to conclude that for some shifted operator, opid:

is_subst(x. opid(v1. b1, . . . , vn. bn))

if
is_subst(x, v1. b1) & . . . & is_subst(x, vn. bn)

We need to compose the opid function with an object that will make the result
a Termk→Term function (consuming the x1, . . . , xk variables) which we then show
is a substitution function. This means that the function that is composed with
opid should get a tuple of Termk as input and return the vector of n substitution
functions, built by consuming x. In short, we package all the necessary information
in F :

F : Termk → (i : 1 . . . n → SubstFuncai
)

so we get the expected:

mkTerm(o, n, a) ◦ F : Termk→Term

Now for the main result — the validity of the second rule may be formulated thus:

∀ o : OpId, n : N, a : (1 . . . n → N), k : N,
F : Termk → (i : 1 . . . n → SubstFuncai

).
∀i : 1 . . . n. is_substk+ai

(λ
(k)

ts , xs . F (ts)(i)(xs))
⇒ is_substk(mkTerm(o, n, a) ◦ F )

where (λ
(k)

x, y. B(x, y))(u1, . . . , uk+n) ≡ B((u1, . . . , uk), (uk+1, . . . , uk+n)).6

Proof. Assume o, n, a, k, and F are given as specified. We also assume that the
constructed functions are substitution functions; therefore, for every 1 ≤ i ≤ n we
get ci : Term, ui : Vark, vi : Varai such that:

∀r1
1, . . . , r

1
k, r

2
1, . . . , r

2
ai

: Term. F (r1
1, . . . , r

1
k)(i)(r

2
1, . . . , r

2
ai

) = ci[[r1, r2/ui, vi]]

6Note that this special form of λ could be avoided if the fourth input type to
mkTerm would take the terms first and then the index (instead of the SubstFuncai

),
but that would require a special composition operation instead.
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• Let t : Termk be some k Terms,

• let xi = newvarai
(F (t)(i)),

• and let s = newvark(c, x1, . . . , xn).

Now we can proceed: our goal due to the definition of ‘is_subst’, is to derive an
equality of the form

(mkTerm(o, n, a) ◦ F )(t) = B[[t/X]]

where, and this will be the tricky part, B and X are independent of the input, t.
So:

(mkTerm(o, n, a) ◦ F )(t)

= mkTerm(o, n, a, F (t))

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, F (t)(i)(xi)�))� (mkTerm def.)

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[t, xi/ui, vi]]�))� (F ’s fact)

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]][[t/s]]�))� (?7)

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]]� [t�/s�]��))� (·[[·/·]] def.)

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]]� [t�/s�]))� (?2)

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]]�))[t�/s�]� (?10, see below)

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]]�))�� [t�/s�]� (?2)

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]]�))�[[t/s]] (·[[·/·]] def.)

In the above, making sure that ?10 can be applied needs some care. Assume that
for some j, l, the variable sj� is free in the lth body, which is cl[[s, xl/ul, vl]]�. We
need to make sure in this case that xl� is not free in either tj� or sj�. The latter is
trivial by the choice of s (and holds for all indexes), but the former is not obvious.
What we do know about xl� is its definition:

xl� = newvaral
(F (t)(l))� = newvaral

(cl[[t, 0
al/ul, vl]])�

but since sj� is free in cl[[s, xl/ul, vl]]�, then ul,j� must appear in cl�; therefore, the
choice of xl� above must pick variables that do not appear in tj� so we’re safe.

Going back to the main proof, the last term of the equality chain built so far was:

mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]]�))�[[t/s]]

which has the B[[t/X]] structure that we’re looking for, but we’re not finished
because both the B and the X parts depend on t — xi is defined in terms of t, s
is defined in terms of xi, and both B and X parts contain instances of s (and B
actually contains xi as well).

So we choose t-independent values now: let x′
i = newvarai

(ci) and let s′ =
newvark(c, x′

1, . . . , x
′
k), we also need to show that in the above, using x′

i, s
′ instead
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of xi, s is still the same value. In an attempt to simplify this we now choose n sets
of variables z1 ∈ Terma1 , . . . , zn ∈ Terman , which are completely fresh: they do not
appear in anything mentioned so far, including t.

Now, back to our equality chain which left off at:

= mkCTerm(o, n, a, λi. mkBndCTerm(xi�, ci[[s, xi/ui, vi]]�))�[[t/s]]

By ?11:

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s, zi/ui, vi]]�))�[[t/s]]

Next, we use substitution to get s′ inside — s are distinct, s′ are distinct, and s′

does not occur in zi:

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s′[[s/s′]], zi[[s/s′]]/ui, vi]]�))�[[t/s]]

Because s′ does not occur free in ci, this would be the expansion of the following
substitution by ?9:

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s′, zi/ui, vi]][[s/s′]]�))�[[t/s]]

Combining ·[[·/·]] and ?2 we get:

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s′, zi/ui, vi]]� [s�/s′�]))�[[t/s]]

zi do not occur in either s or s′ so we can use ?10:

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s′, zi/ui, vi]]�))[s�/s′�]�[[t/s]]

Again, using ·[[·/·]] and ?2:

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s′, zi/ui, vi]]�))�[[s/s′]][[t/s]]

Now, s does not appear in the mkCTerm except possibly for s′ (because we know it
is not in ci or zi), so using ?9 we get:

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s′, zi/ui, vi]]�))�[[s[[t/s]]/s′]]

= mkCTerm(o, n, a, λi. mkBndCTerm(zi�, ci[[s′, zi/ui, vi]]�))�[[t/s′]]

Finally, using ?11 we get:

= mkCTerm(o, n, a, λi. mkBndCTerm(x′
i�, ci[[s′, x′

i/ui, vi]]�))�[[t/s′]]

Our final term has the desired B[[t/X]] form, and now the B and the X parts are
independent of t. This is because:

• x′
i depends only on ci;

• s′ depends only on x′
i and c, and therefore only on c;

• and ui and vi, just like c, were derived from the assumption that the inputs
are substitution functions.

QED.
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4.7 Relations to HOAS Work

We have shown the plausibility of basing logical reflection on a higher-order ab-
stract syntax, where each syntactic operator is denoted directly by another op-
erator. Our development of a quotation mechanism was independent of stan-
dard higher-order abstract syntax (HOAS) work, but the result closely parallels it.
HOAS is a relatively new idea (late 80’s) for a practical system — described by
Pfenning and Elliott [57] (but suggested before that). In this section we present a
survey of HOAS work, along with its relation to our work in Nuprl. A good intro-
duction to HOAS was written by Hofmann [38], which is loosely used as the basis
for some parts of this survey. Note that in recent years efforts in this area have
been somewhat intensified, for example, the PoplMark Challenge [7] has been pre-
sented to the formal community and has been encouraging new work in the area.
(In addition, this comes at a time where “language oriented7” tools are becoming
more popular even in the commercial world.) This presentation is, therefore, likely
to be somewhat dated.

The main goal of HOAS is representing formal languages that use bindings, in
a way that relieves users from the hassle of name management — alpha-renaming
being the major complication that needs constant care. This is achieved by a form
of reflection: bindings of the object language are represented by bindings of the
meta language, effectively exposing the binding management of the meta language
implementation to the object language. This is achieved by using only the binding
structure of functions, so syntax is represented using functions.

A standard concrete representation of terms using abstract syntax trees8 would
use the following type definition9:

Term ::= var : Var → Term

| app : Term× Term → Term

| lam : Var × Term → Term

Comparing this to the higher-order version:

Term ::= app : Term× Term → Term

| lam : (Term → Term) → Term

demonstrates the reflected usage of the meta-language bindings — a function is
represented by a structure that itself holds a function, and there is no explicit

7There is no common term for this methodology yet.
8Abstract syntax trees, or AST’s, is a common term for a representation of

syntax using recursive data structures, unrelated to ‘abstraction’ as a term used
for functions. See also the glossary entry.

9In this notation, typewriter fonts are used for constructor functions, for ex-
ample, lam : Var × Term → Term means that lam gets a variable and a Term and
returns a Term. The ‘→’ arrow is the standard function type constructor.
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variable name anywhere. For example, this is how the standard Church numeral
“1” is represented:

1 = λfx. fx is represented by: lam(λf. lam(λx. app(f, x)))

First, note that there are three different ‘lambda’ operators: the ‘λ’ on the left is
part of the input syntax, the ‘lam’ is the HOAS Term constructor mentioned above,
and this has an argument which is a meta-level ‘λ’ which denotes a real function.
Also note that the variables written in the object language are represented by
meta-level variables in the HOAS representation: the same names are used for
convenience but there are no concrete names in the representation — we could
just as well write

1 = λfx. fx is represented by: lam(λa. lam(λb. app(a, b))),

there is no ‘var’ case since there is no need for one.
There is an additional benefit for using a HOAS representation: binding struc-

tures are represented as functions, so to substitute a term for a bound variable,
all we need to do is apply the function that represent the binding structure. For
example, beta reduction is specified succinctly as:

app(lam(f), t) reduces to: f(t)

In fact, this is an obvious usage given the way we have presented our Nuprl quo-
tations — these are substitution functions precisely because they represent substi-
tutions. Our semantic explanation is one that treats the property of representing
substitutions at the same importance level as representing bindings, in contrast to
standard HOAS work that seems to treat it merely as a convenient by-product.

The HOAS representation is implemented by a simple translation function that
is used to quote input terms:

pλx. eq → lam(λx. peq)

pe1e2q → app(pe1q, pe2q)

pxq → x

This translation function is part of the implementation’s interface code: it works
with concrete syntax as its input and output.

Figure 4.1 demonstrates a naive Nuprl implementation of an ‘aterm’ using
the built-in concrete ‘term’ type. This code is purely demonstrational, but a
representation that is similar in its nature (and type) could be used to make Nuprl
use these ‘aterm’s as the fundamental data type. This particular implementation
suffers from relying on the concrete ‘term’ type, but it is enough to demonstrate the
principles and the problems that are involved in such a representation. For example
note that, as expected, variable names are non-existent in the representation. Also
note that ‘term_to_aterm’ and its helper function, ‘bterm_to_substfunc’ serve as
the translation functions which work on the concrete syntactic level. More serious
problems that such higher-order abstract representations suffer from are discussed
below.
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absrectype aterm =

(tok # parm list) # ((int # (aterm list -> aterm)) list)

with make_aterm opsig substfuncs = abs_aterm (opsig,substfuncs)

and destruct_aterm aterm = rep_aterm aterm

;;

letrec new_vars v others n =

if n>0 then

let new = new_var v others in

new . (new_vars v (new . others) (n-1))

else []

;;

let zero_aterm =

make_aterm (op_of_term (mk_integer_term 0)) [] ;;

letrec bterm_to_substfunc (vars, subterm) =

length vars,

(\ts .

term_to_aterm (fo_subst (zip vars (map aterm_to_term ts))

subterm))

and substfunc_to_bterm (arity, func) =

let bogus = aterm_to_term

(func (build_list [arity,zero_aterm])) in

let vars = new_vars ‘x’ (free_vars bogus) arity

in

vars,

(aterm_to_term

(func (map (term_to_aterm o mk_variable_term)

vars)))

and term_to_aterm term =

let opsig, bterms = destruct_term term in

make_aterm opsig (map bterm_to_substfunc bterms)

and aterm_to_term aterm =

let opsig, substfuncs = destruct_aterm aterm in

make_term opsig (map substfunc_to_bterm substfuncs)

;;

Figure 4.1: A naive HOAS implementation using Nuprl’s ‘term’ type
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4.7.1 HOAS Problems

As useful as HOAS is for managing bindings, it comes at a heavy price. There are
two major problems: exotic terms and induction.

Exotic terms result from the fact that the functions used in the representation
cannot be just any random Term → Term function, they must not use their
input argument for anything except for syntactic constructors. For example,
we can define an ‘is_app’ function that returns a Church boolean depending
on its input being an application construct:

is_app : Term → Term

is_app(app(t, r)) = λx. λy. x

is_app(lam(f)) = λx. λy. y

Since is_app has the correct type, we can use it with the HOAS lam con-
structor, lam(is_app), and the result is a closed Term value according to the
HOAS Term definition. However, this construction does not stand for any
term. This is the same problem that was discussed at the beginning of this
chapter, in page 59: in both cases we have a term that is not a quotation of
any other term.

Induction is very hard to get: there is no well-founded inductive structure on
Term. All we have in the representation is abstract function so we need to
find a way to restrict these functions to ones we know how to recurse on. This
problem is indicated by a negative occurrence of Term on the left side of the
lam constructor, which corresponds to the fact that we get as input some
arbitrary term, and if it is used for anything except arguments to syntac-
tic constructors, we get exotic terms. A simple definition on HOAS cannot
‘penetrate’ functions completely, leaving us with no base case. It is possible,
however, to define an induction principle that is based on the concrete coun-
terpart of substitution functions, see Theorem 5.2.21 (SubstFunc induction)
in the following chapter.

Note that the ‘aterm’ definition of Figure 4.1 suffers from the same problem:
‘make_aterm’ can be used with arbitrary functions, including ones that are not
proper substitution functions. This specific case could have been solved if the
code would hide the ‘make_aterm’ function and expose only ‘term_to_aterm’ for
creating ‘aterm’ objects. ‘term_to_aterm’ uses ‘bterm_to_substfunc’ to convert
a given variable list and a body term to a proper substitution function. Obviously,
this solution can only work given the inefficient sample ‘aterm’ implementation,
which ultimately uses ‘term’ functionality and all that it requires, saving nothing.

4.7.2 Survey of Proposed Solutions

In this section we briefly cover some of the proposed solutions within the HOAS
community.
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Using a Modal Type

The solution which is described by Despeyroux, Pfenning, and Schürmann [28] goes
back to earlier work [23] for its motivation, where it was used to explain a run-
time code generation system. It can be summarized as decomposing the Term →
Term (primitive-recursive) function space into a modal operator and a parametric
function space. The modal operator is a function over the meta-language’s types,
so that (�Term) → Term is the parametric function space. The intuition is that
�T is the type of values representing values in T : a rough equivalent for �T is
our ‘is_subst’ predicate, when the type of the represented value is known.

Following this intuition, it is not surprising that the � operator can be used to
restrict values so it is possible to construct terms freely with lam, without getting
exotic terms. This restriction works like ‘is_subst’ in that it forbids functions
from using their input values, except that this is enforced through the type system
rather that through a lexical analysis of the functions. To get primitive recursion,
a syntactic-like mechanism is used: two functions (Ha, Hl) are given, and the
recursion result is calculated by replacing every occurrence of app and lam by
Ha and Hl respectively. The result is limited, for example, the authors indicate
that structural equality between two terms cannot be expressed using this. They
hypothesize that a pattern-matching calculus might be a more practical solution.

Adding a Var Type

Facing the same two fundamental problems, Despeyroux, Felty, and Hirschowitz
[27] offer a different approach: adding a new ‘Var’ type. This makes the syntax
representation have another constructor for these objects, so the Term type is now
defined as:

Term ::= var : Var → Term

| app : Term× Term → Term

| lam : (Var → Term) → Term

For example, the Church “1” numeral representation becomes:

1 = λfx. fx is represented by: lam(λf. lam(λx. app(var(f), var(x))))

Note that the actual type that implements Var can be anything, it can be as simple
as natural numbers, symbols, or strings. The resulting representation of various
syntax objects contain functions that expect this type, but it is not expected to
serve any computational role.

By itself, this does not prevent exotic terms; we can get them using the same
way, by using a function that inspects the value it gets as an input — restricted
now to a variable rather than any term, but still results in a misbehaving function
and an exotic term. For example, if Var is implemented as natural numbers:

foo := λf, x. case x of 0 ⇒ var(x)
| succ(n) ⇒ app(var(f), var(n))

exot1 := lam(λf. lam(λx. foo(f, x)))
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Two more types of exotic terms are discussed in this work [27]:
exot2 := lam(λx. case x of 0 ⇒ var(0)

| succ(n) ⇒ var(succ(n))
exot3 := var(succ(0))

exot2 demonstrates the need for using extensional equality, and exot3 uses a free
variable. The solution for these problems that are suggested in this work [27] is
using a ‘valid’ predicate which is similar to:

valid := λe. ∃e′. eq(e, e′) & valid0(e
′)

where ‘eq’ is an extensional equality predicate, and ‘valid0’ is a predicate that
can use some set of free variables. The ‘valid0’ predicate is constructed in a way
that allows only non-exotic terms (which will disqualifies exot1) using the extra
Var type.

The main problem with this approach is that they it loses substitution: in the
example of the beta reduction specification we previously had:

app(lam(f), t) reduces to: f(t)

But if, for example, we take f as λx. app(var(x), var(x)), then for some v : Var
we get f(v) = app(var(v), var(v)) where we actually want app(v, v). This means
that substitution needs to be defined as an operation that applies the function
and replaces the resulting vars. This is further complicated by the fact that they
cannot define such a substitution function directly, but through a predicate. Also,
when they try to handle different variable types (e.g., type variables), they en-
counter a need to add more Var types. In short, this approach keeps the automatic
alpha-renaming property, but gives up on automatic substitution and similar func-
tionality.

Additional Solutions

More solutions have been suggested in the HOAS community, for example, Hof-
mann [38] mentions Honsell and Miculan [39] who show that if the Var type of
Despeyroux et al [27] is left unspecified (e.g., as a variable of some Set type), then
adequacy still holds. This goes well with the intuition for our ‘is_subst’: the
main point is forbidding any usage of input values more than passing them around
to template holes. Using an unspecified Var type makes it impossible to use its
values, achieving a similar restriction. After a survey of these solutions, Hofmann
[38] continues to use functor categories to justify the adequacy of the modal logic
solution. More recent works focus on general solutions for the recursion problem
over higher-order data, improving the modal type, etc.

Yet another direction that was initiated by Gabbay and Pitts [58, 31], is based
on Set theory and permutations. This approach was first used for the FreshML
implementation [62]. Recently, Christian Urban et al [73, 72] has improved this
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approach, mainly making it compatible with the axiom-of-choice (a problem in
earlier nominal logic work by Pitts et al). Doing this, Urban has accomplished
impressive results that are based on nominal logic; this work can be viewed as
coinciding with our results — detailed in the following section.

4.7.3 Nominal Techniques

In Urban’s work [73], an inductive set is constructed, such that it is bijective with
the α-equated lambda-terms (CTerm//α, or Term in our notation). The main
method that is used to create this set is using variable permutations, which form
the basis of Urban’s formalization. Like our work, Urban motivates his work by
observing the technical difficulties that arise when dealing with concrete syntax.

Using Urban’s formalism, reasoning about syntax with binders becomes quite
easy, in Urban’s words: “reasoning about this definition is very similar to infor-
mal reasoning on paper”. Indeed, using his formalization, Urban has been able
to implement in Isabelle/HOL the standard proofs for Church-Rosser and strong
normalization. There are therefore some similarities in using Urban’s formaliza-
tion and ours, and both can be seen as a leap in expressive power for dealing with
meta-mathematics. (Urban’s work was brought to our attention in the final stages
of writing this text.)

Despite the high-level similarity between our method and Urban’s, the imple-
mentation uses very different techniques. In fact, the nominal approach which Ur-
ban uses as a foundation, is quite different than most other HOAS approaches that
we have discussed so far. The basic building blocks that are used in the nominal
approach — permutations — can be considered as a variation on variable renam-
ing, except that instead of renaming concrete names they are permuted. Variable
permutations are simpler than renaming since they preserve α-equivalence which
require some additional mechanics in the former [71]. For example, consider the
term ‘λx.x(y)’, clearly, a naive renaming of ‘x’ to ‘y’ leads to an inappropriate
capture of ‘y’, yielding a term with a different meaning. On the other hand, if we
use permutations, for example ‘(x y)’ — a permutations that replaces ‘x’ with
‘y’ and ‘y’ with ‘x’ — then the result is ‘λy.y(x)’. The intuition is that when-
ever renaming leads to capture, permutations will re-use the ‘renamed’ identifier
(which is usually thrown away) to rename identifiers that could be captured. This
extra robustness of permutations, is what allows them to be used at a very low
level: when a permutation is applied over a term, it is applied recursively on both
its subterms and its binding positions, so in this view, a binding position is no
different than a subterm. An additional indication of the ‘low-levelness’ of this
approach is in the definition of support : the support of a term is defined as

supp(x) ≡ {a | inf{b | (a b) • x 6= x}}

but Urban explains how to compute it in a simple way:

supp(a) = {a}, supp(t1t2) = supp(t1) ∪ supp(t2), supp(λa. t) = supp(t) ∪ {a}
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— note that the third rule specifies that the support of a term is the set of all
atoms that occur in it — free or not.

Indeed, later on, nominal abstraction are introduced, which behave in a very
similar way to terms modulo α-equality — but the definition of nominal abstrac-
tions use techniques that reminiscent of conventional renaming. For example, a
side condition to one of the cases in the definition is: a 6= b∧x1 = (a b)•x2∧a#x2,
and later on, when a subset of functions from A to Φ is created to define Λα, the
expression for these functions contains: ‘if b#t then (a b) • t else er’ — in
both of these, the freshness constraint (·#·) essentially turns the permutation into
a plain renaming with a new variable.

Given this intuition, it is not surprising that once nominal abstractions are
defined, and the Λα is created using the subset of A → Φ functions, Urban is
in a very similar setting to ours. Nominal abstractions behave like α-equivalence
classes over concrete terms (when used with concrete syntax), and the created set
of functions is essentially viewed as an encoding of such classes. For example,
the support set of members of Λα behaves in a way that coincides with the usual
meaning of free variables, compare these construction rules

supp(am(a)) = {a}, supp(pr(t1t2)) = supp(t1) ∪ supp(t2),

supp(se([a]. t)) = supp(t)− {a}

to the above and note that the last one accumulates only free variables. The
similarity goes further: as is the case with our substitution functions, Urban notes
that deciding whether two A → Φ functions are equal is impossible in a general, but
it is possible over the defined subset, since the construction rules provide a simple
way to compare two functions in a way that makes it similar to a comparison
of two substitution functions given their concrete representation. Furthermore,
Urban’s quotation function, ‘q’, is similar to other such functions in different HOAS
formalizations, including ours (see Section 3.5.4), with the nominal abstraction
construct being its distinguishing feature, and with the usual result [73, Lemma 9]:
t1 ≈ t2 iff q(t1) = q(t2) (where ‘≈’ coincides with ‘=α’ and the right-hand-side
equality is over Λα).

Using Urban’s formalization, induction is cheap — it ‘falls off’ as a by product
of the definition of Λα. However, he explains that this is “not very convenient in
practice”, since induction is on the construction of Λα rather than on the term
structure. A new induction principle is therefore devised, which not only allows
structural induction, but is enhanced with an additional variable that stands for
the “context” of the induction. This is one of the major points of Urban’s work
(further explored in [72]).

Finally, a schematic layout of the major components in Urban’s formalization
and the rough equivalents in ours is shown in Figure 4.2.
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Φ ⊇ Λα ←bijection→ Λ/≈ ←coincide→ Λ/=α↓ ↓Term CTerm//α

Figure 4.2: Major components in Urban’s formalism; connections to ours

Comparison

The major issue with the nominal logic approach, is that it is not derived from
simple syntax principles that are commonly used. This is evident in numerous
terms that are specific to this approach and introduced during the presentation
(Disagreement Set, Permutation Equality, PSets, Support, Freshness, Fs-PSets,
Nominal Abstractions). This is in contrast to our work that is built on a foundation
of plain concrete terms, and well-known alpha equality.

Compared to ‘full HOAS’ [57], Urban admits that mechanisms like capture-
avoiding substitution do not come for free as in full HOAS (instead, his system
“load[s] the work of such definitions onto the user”). On the other hand, an
advantage is being able to deal with simultaneous substitutions with no difficulties.
As we have seen, our formalization enjoys both of these advantages.

The nominal work has so far been focused on the lambda calculus, with a
single binding form. This goes well with the uniform approach of permutations to
syntax, regarding all sub-pieces uniformly, whereas Nuprl treats binding positions
in a special way. Urban claims that there should not be any difficulties in expanding
the method to deal with other languages, and mentions research that adapts the
approach for the π-calculus, yet our approach deals with arbitrary operators thanks
to Nuprl’s uniform syntax representation and open-endedness.

A major advantage of the nominal logic approach is the fact that induction
comes freely with the Λα construction. As we shall see in Chapter 5, we do require
significant work to achieve an induction rule. The presented formalization is quite
clean and elegant, and since the end result is quite similar to ours, we may have
been able to use it to justify our system, had it been developed at the time our
research was done.

The support for Barendregt-style proofs via a customized induction principle
that carries around a ‘variable context bag’ seems like a useful feature for com-
mon syntax-oriented proof techniques. However, we suspect that the MetaPRL
derivative of our work [55] can tackle this problem in a more elegant way, by us-
ing ‘bterm’ as the basic syntax building blocks, considering a top-level ‘bterm’ as
denoting a ‘w’ith a given ‘free variable context’ (see [55] for further details).

Finally, Urban mentions a few problems that are due to the Isabelle/HOL envi-
ronment, the main problem being that it requires injectivity of term constructors,
but nominal abstractions are not. This leads to a work-around of “defining func-
tions as inductive relations and then use the definite description operator THE of
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Isabelle to turn relations into functions”. A few examples demonstrate the com-
plexity, for example, in proving “totality” of these relations that is required for
turning them into functions. He also mentions that “ideally, a user just defines
an inductive datatype and indicates where binders are—the rest of the infrastruc-
ture should be provided by the theorem prover”, which might indicates a possible
advantage of using Urban’s work in the context of Nuprl, taking advantage of its
syntax uniformity.

4.7.4 Comparison with the Nuprl Solution

The quotation system that we have devised in Nuprl is similar to standard HOAS.
This holds for the representation as well as the problems we encounter. On the
representation side, we have seen the three different ‘lambda’ operators in the right
hand side of

λfx. fx is represented by: lam(λf. lam(λx. app(f, x)))

and in Nuprl we also have

λf,x.apply(f;x) is represented by: λf,x.apply(f;x)

where the ‘λ’ in the HOAS case turns into the function semantics of a bound
Nuprl subterm, and the other two correspond to the ‘λ’ operator id, and to ‘λ’,
its shifted version. In addition, the quotation and unquotation functions that
we have implemented in Nuprl (‘rquote_term’ and ‘runquote_term’) convert a
concrete term to another concrete term that represents it, i.e., they are functions
that work at the concrete syntax level (and use the relevant ML functionality), in
an equivalent way to the HOAS translation that was discussed on page 73.

A technical difference between HOAS over some “conventional” syntax and our
approach over Nuprl syntax, is that in the Nuprl case the syntax makes the binding
structure explicit and uniform. This means that we don’t have to encode syntax
pieces that contain bindings using a term with a different binding structure, we
just keep the same term structure. For example, the following translation (from
[57]):

plet v1 = e1 and ... and vn = en in eq → let(λv1, ..., vn. peq, 〈pe1q, ..., penq〉)

requires augmenting the Term type with a new let constructor, and massaging
the original term into one that has all bindings in an explicit function. In the
Nuprl case, there is no need for a specific constructor addition since we extend the
system by assigning meaning to any operator with an ‘rquote’ flag, so there is no
need for changing the term binding structure (e.g., the simple Nuprl ‘let’ form is
already in this form). This is indeed a technical point, but an important one since
it was the motivating reason that made us reach our quotation mechanism, as we
wanted quotations to use the same Nuprl terms so we can enjoy the benefits of
string reflection.
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A more substantial difference is the mechanism which we use to verify valid
term representations (i.e., ruling out exotic terms). Our approach is fundamentally
different from standard HOAS solutions, in that it is more syntactic in its nature.

4.8 Conclusion

Our proof from Section 4.6.2 shows that the ‘is_subst’ predicate is a valid re-
striction, based on pure mathematical principles, beginning with a clear definition
of what can be considered a substitution function. These principles are founded
on the well-known intuitive concept of concrete syntax. Our solution therefore
uses only a few basic tools in addition to some syntax: functions, tuples, simple
arithmetic, etc, as well as a syntax with an explicit uniform binding structure.

The resulting ‘is_subst’ rule uses the syntactic structure of term-representing
terms to verify that a syntactic construct is a valid Term— in itself, it does not
depend on the type theory. Using this rule is easily accompanied with the existing
environment: at any point during an ‘is_subst’ proof it is possible to use existing
type judgments, therefore making it possible to use not only literal quotations, but
mixtures of quotations and descriptions. Such descriptions can make full use of the
environment. Hence this rule can be used as an add-on with varying environments;
in fact it is already in use in the MetaPRL framework [36] which uses an approach
based on this work to implement syntactic reflection [55], and this rule is used to
mix literal quotations and descriptions.

The same general principle can be used in programming languages, for example,
Scheme’s high-level macro facility, ‘syntax-rules’ and MetaPRL’s rewrite speci-
fications are both specified as a template constructs that are inherently restricted
to proper substitution functions. The various HOAS type-based approaches put
this burden on a type system, but type checking code is a syntactic process as well.
On the other hand, we enjoy the advantage of not being confined to a specific type
system, or a specific type methodology.

A possible conjecture that explains the simplicity of our system compared with
the heavy HOAS solutions, is that when a language revolves around a type system,
it makes it more worthwhile to explain as much as possible using it, rather than
escaping to new kinds of analyses. Nuprl’s type system makes it easy to add new
types based on any predicate (rule) using predicate subtypes, for our specific case,
we can just take a subset type of all Term n→ Term functions using the ‘is_subst’
predicate:

SubstFuncn = {f : Termn→Term | is_substn(f)}

We believe that implementing our solution using a type system will lead to the
same result (and the same kind of constraints), the question is whether the semantic
explanation is simpler using our approach.

There is another observation that can be made when comparing our work to
standard HOAS. Syntax-reflective implementation work involves languages at three
different levels: a meta-language that implements an object language and that is
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itself described in some theoretical language. This goes back to the philosophical
discussion in Section 2.1, where the feature we want to reflect is bindings. We
believe that our solution is elegant in that the three language levels are similar
in nature, mainly because we require almost nothing more than the existence of
binders and functions — in our case, the relation between the implementation’s
meta-language and the object-level language is validated using the (philosophi-
cally) similar concept of functions; in a sense, we have demonstrated HOAS based
only on the mathematical concepts of a function, a language to describe functions,
and substitution. It can therefore be considered as yet another step in the direction
of bridging the gap between the logic world (where the meta-meta language is the
central concept) and the programming language world (where the implementation
language is central).



Chapter 5
Formalizing Representation
5.1 Design Constraints for a Representation Relation

Given the material that was presented so far, we want to verify that our quotation
scheme can actually be used for a valid representation relation in Nuprl. For this
we need to show that the following properties are satisfied:

(a) if A repsB then A is closed (has no free variables).

(b) if A repsB and A repsB′ then B is B′.

(c) if A repsB and A ∼= C then C repsB (here we assume that ‘∼=’ is Howe’s
congruent extension of Kleene equality [41].)

(d) for every term B there is a term A such that A repsB.

(e) let rep(B) repsB for all B, i.e., let rep(·) be one of the functions implicit
in d by the axiom of choice.
This assumption would be most naturally effected in our intended domain
by defining the full quotation function and using it to find the standard
representative.

(f) We add one more requirement, which is necessary if one is to be able to
perform effective inquiries, such as testing term identity.
if A repsB then A evaluates to some term.

5.2 Definitions, Facts, and Proofs

5.2.1 Description 1: Term type

Term is defined as the type of Nuprl terms, with the usual structure, modulo α-
equivalence. The point where this is different than standard Nuprl formalism is
that we always take this as the HOAS representation, as demonstrated in Chap-
ter 4. The main difference between this and the Term definition from Chapter 4 is
that we are now talking about actual Nuprl terms.

Note that this is not a definition — it is a description, as Term will be defined
by material in this chapter (see Definition 5.2.6 (reps) below).

5.2.2 Definition 2: Atom type

Atom is defined as a subclass of Term — all terms with no subterms, i.e.,

∀o : OpId. mkTerm(o, 0, (λi. ?), (λi. ?)) ∈ Atom

84
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5.2.3 Definition 3: RepsFormation relation constructor

We define ‘RepsFormation’ as a constructor for reps-like relations over terms:

A RepsFormationP B ≡
∃ o : OpId, k : N, a : (1...k → N), f, g : (i : 1...k → SubstFuncai

).

B = mkTerm(o, k, a, f)

& A evalsto−−−−−→ mkTerm(o, k, a, g)

& ∀i : 1...k, t : Atomai . gi(map(q, t)) P fi(t)

where ‘o’ denotes the opid that is the shifted version of o, and ‘q’ is the quotation
operation (see Definition 5.2.23 (q)). P will be used for a fixpoint in Theorem 5.2.5
(RepsFormation fixpoint).

5.2.4 Theorem 4: RepsFormation monotonic

It is simple to see that ‘RepsFormation’ is monotonic:

∀P, Q : Term-relation. P ⊆ Q ⇒ RepsFormationP ⊆ RepsFormationQ

5.2.5 Theorem 5: RepsFormation fixpoint

Using Theorem 5.2.4 (RepsFormation monotonic):

∃Q : Term-relation.

RepsFormationQ ⊆ Q

& ∀P : Term-relation. RepsFormationP ⊆ P ⇒ Q ⊆ P

5.2.6 Definition 6: reps relation

‘reps’ is defined using Definition 5.2.3 (RepsFormation), as the Q in Theorem 5.2.5
(RepsFormation fixpoint):

reps ≡ the strongest P such that RepsFormationP ⊆ P

or:

A repsB ≡
∃o : OpId, k : N, a : (1...k → N), f, g : (i : 1...k → SubstFuncai

).

B = mkTerm(o, k, a, f)

& A evalsto−−−−−→ mkTerm(o, k, a, g)

& ∀i : 1...k, t : Atomai . gi(map(q, t)) reps fi(t)
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5.2.7 Theorem 7: reps induction

This follows from Theorem 5.2.5 (RepsFormation fixpoint) and Definition 5.2.6
(reps):

∀P : Term-relation. (RepsFormationP ⊆ P ) ⇒ reps ⊆ P

Another way to write this is:

∀P : Term-relation.

(∀x, y : Term. x RepsFormationP y ⇒ x P y)

⇒ (∀x, y : Term. x reps y ⇒ x P y)

5.2.8 Theorem 8: reps is RepsFormation fixpoint

We need to show that
RepsFormationreps = reps.

First, by Definition 5.2.6 (reps) we get:

RepsFormationreps ⊆ reps

Using this with Theorem 5.2.4 (RepsFormation monotonic), we get:

⇒ RepsFormationRepsFormationreps ⊆ RepsFormationreps

and by Theorem 5.2.7 (reps induction):

⇒ reps ⊆ RepsFormationreps

We now need to show that the design constraints specified in Section 5.1 hold
for this ‘reps’.

5.2.9 Theorem 9: reps closed (requirement (a))

A repsB ⇒ closed(A)

This is trivially true by the definition of evalsto−−−−−→ which holds only for closed
terms.

5.2.10 Theorem 10: reps evaluates (requirement (f))

A repsB ⇒ ∃t : Term. A evalsto−−−−−→ t

This is true by Definition 5.2.6 (reps).
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5.2.11 Theorem 11: reps unique (requirement (b))

A repsB & A repsC ⇒ B = C

To prove this, begin with a complete version:

∀A, B, C : Term. A repsB & A repsC ⇒ B = C

Change it to a form that fits Theorem 5.2.7 (reps induction):

∀A, B : Term. A repsB ⇒ ∀C : Term. A repsC ⇒ B = C

Define R as the right hand side relation:

A R B ≡ ∀C : Term. A repsC ⇒ B = C

and we want to show:

∀A, B : Term. A repsB ⇒ A R B

Using Theorem 5.2.7 (reps induction), it is enough to show:

∀A, B : Term. A RepsFormationR B ⇒ A R B

Let A and B be two arbitrary Terms such that A RepsFormationR B; we need to
show A R B. Also let C be a Term such that A repsC, and we now need B = C.
Expanding what we know on A, B, C:

∃o : OpId, k : N, a : (1...k → N), f, g : ((i : 1...k) → SubstFuncai
).

B = mkTerm(o, k, a, f)

& A evalsto−−−−−→ mkTerm(o, k, a, g)

& ∀i : 1...k, t : Atomai . gi(map(q, t)) R fi(t)

and

∃o1 : OpId, k1 : N, a1 : (1...k1 → N), f1, g1 : ((i : 1...k1) → SubstFunca1i
).

C = mkTerm(o1, k1, a1, f1)

& A evalsto−−−−−→ mkTerm(o1, k1, a1, g1)

& ∀i : 1...k1, t : Atoma1i . g1i(map(q, t)) reps f1i(t)

By the uniqueness of the right hand side of evalsto−−−−−→ we get:

o = o1 & k = k1 & a = a1 & g = g1
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So the above can be rewritten as:

∃o : OpId, k : N, a : (1...k → N), f, g, f1 : ((i : 1...k) → SubstFuncai
).

B = mkTerm(o, k, a, f)

&C = mkTerm(o, k, a, f1)

& A evalsto−−−−−→ mkTerm(o, k, a, g)

& ∀i : 1...k, t : Atomai . gi(map(q, t)) R fi(t) (a)

& gi(map(q, t)) reps f1i(t) (b)

Now by the value of B and C, to show that B = C we only need f = f1 (under
the last ∀ qualifier):

fi(t) = f1i(t)

but expanding (a) we get:

∀D : Term. gi(map(q, t)) repsD ⇒ fi(t) = D

and from this, with (b):

gi(map(q, t)) reps f1i(t) ⇒ fi(t) = f1i(t)

QED.

5.2.12 Theorem 12: reps squiggle (requirement (c))

A repsB & A ∼= C ⇒ C repsB

This proof requires referencing Howe’s congruent extension of Kleene equal-
ity, ‘∼=’ [41]. The basic property that we use is that ∼=-equality has a “same-
shape” property — two ∼=-equal terms evaluate to a terms with the same outer-
most (canonical) opid and arity, and substitution function bodies that produce
∼=-equal results on ∼=-equal inputs. Actually, we need a weaker version, where the
substitutions produce ∼=-equal results on equal canonical input atoms:

∀A, B : Term. A ∼= B ⇒ (5.1)

∃o : OpId, k : N, a : (1...k → N), f, g : ((i : 1...k) → SubstFuncai
).

A evalsto−−−−−→ mkTerm(o, k, a, f)

& B evalsto−−−−−→ mkTerm(o, k, a, g)

& ∀i : 1...k, t : Atomai .

(∀j : 1...ai. is_canonical(ti)) ⇒ fi(t) ∼= gi(t)

The proof uses Theorem 5.2.7 (reps induction), similarly to Theorem 5.2.11
(reps unique). We begin with the complete version of what we want to prove:

∀A, B, C : Term. A repsB & A ∼= C ⇒ C repsB
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Rephrasing it for Theorem 5.2.7 (reps induction):

∀A, B : Term. A repsB ⇒ ∀C : Term.A ∼= C ⇒ C repsB

Define R as the right hand side relation:

A R B ≡ ∀C : Term. A ∼= C ⇒ C repsB

and we want to show:

∀A, B : Term. A repsB ⇒ A R B

Using Theorem 5.2.7 (reps induction), it is enough to show:

∀A, B : Term. A RepsFormationR B ⇒ A R B

Let A, B : Term. A RepsFormationR B, and we need to show

A R B.

Also let C : Term. A ∼= C, and we now need

C repsB

Expanding what we know on A, B:

∃o : OpId, k : N, a : (1...k → N), f, g : ((i : 1...k) → SubstFuncai
).

B = mkTerm(o, k, a, f)

& A evalsto−−−−−→ mkTerm(o, k, a, g)

& ∀i : (1...k), t : Atomai . gi(map(q, t)) R fi(t)

and because C is ∼=-equal to A, then by what A evaluates to, and by (5.1), we
know more — since ‘q’ produces canonical terms then (adding new facts to the
above):

∃o : OpId, k : N, a : (1...k → N), f, g, g1 : ((i : 1...k) → SubstFuncai
).

B = mkTerm(o, k, a, f)

& A evalsto−−−−−→ mkTerm(o, k, a, g)

& C evalsto−−−−−→ mkTerm(o, k, a, g1)

& ∀i : (1...k), t : Atomai .

gi(map(q, t)) R fi(t) (5.2)

gi(map(q, t)) ∼= g1i(map(q, t)) (5.3)

And we need to show that
C repsB
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for which we have all the pieces except for one which needs showing (under the
last ∀ qualifier):

g1i(map(q, t)) reps fi(t)

but expanding (5.2) we get:

∀D : Term. gi(map(q, t)) ∼= D ⇒ D reps fi(t)

and from this, with (5.3):

gi(map(q, t)) ∼= g1i(map(q, t)) ⇒ g1i(map(q, t)) reps fi(t)

QED.
In the above, the quotation function ‘q’ was used but a definition was not given.

Providing such a definition is also needed for the last basic ‘reps’ property that we
need — the existence of a ‘rep’ function that, given a term, returns another that
represents it (we will later show that ‘q’ can be used as such a function). Defining
‘q’ requires induction on HOAS terms, so we should describe this first. To do
this we need to inspect how HOAS terms are constructed from and destructed to
smaller terms.

With concrete terms, the situation is simple. A term is constructed from an
operator id, a list of parameters (which we ignore for simplicity), and a list of
bound subterms. A bound subterm is built from a list of variables and a term which
(possibly) contains free occurrences of these variables. In the HOAS representation,
substitution functions are the equivalent of bound subterms, as they carry a body
and bindings in a functional form. The problem is that we cannot construct such
substitution functions using free variables without considerable work (that most
likely involves translating from concrete to abstract terms and back). Because of
this, we construct substitution functions from other such substitution functions —
the concrete analogy is that we define bound terms using bound terms and skip
the intermediate term. This is achieved by a ‘mkSubstFunc’ constructor that gets
an arity (representing the arity of the resulting function), an operator id, and a list
of substitution functions of at least that arity. For example, using “〈·〉” to denote
concrete bound term syntax for substitution functions:

mkSubstFunc1(‘‘foo’’, [〈x. x〉; 〈y, x. y + x〉]) = 〈x. foo(x; x1. x + x1)〉

This seems redundant as it is very similar to creating a term — we could define
‘mkSubstFunc’ over a term, for example, changing the above to:

mkSubstFunc1(〈foo(x.x; y, x.y + x)〉) = 〈x. foo(x; x1. x + x1)〉

but this is more complicated since it requires discriminating terms based on the
arities of their substitution functions.



91

5.2.13 Definition 13: mkSubstFunc constructor

The definition of ‘mkSubstFunc’ is therefore:

∀n : N, o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

mkSubstFuncn(o, k, a, f) ≡
λt : Termn. mkTerm(o, k, a, λi : 1...k. λs : Termai . fi(append(t, s)))

Note that this is a way to create a substitution function from other substitution
functions. The base case of “simple” substitution functions is using simple projec-
tions.

5.2.14 Theorem 14: mkSubstFunc generates substitutions

The claim here is that given substitution functions, ‘mkSubstFunc’ generates a
substitution function:

∀n : N, o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

mkSubstFuncn(o, k, a, f) ∈ SubstFuncn

for this, it is enough to show:

∀n : N, o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

is_substn(mkSubstFuncn(o, k, a, f))

Using the main theorem of Chapter 4 (Section 4.6.2), this is simple if we just shuffle
things a bit. Given n, o, k, a, and f as specified, we define:

g : (Termn → i : 1...k → SubstFuncai
) ≡ λt, i, s. fi(append(t, s))

It is obvious that this definition has the correct type, and in addition:

∀i : (1...k). λ
(n)

t, s. g(t)(i)(s) = λ
(n)

t, s. fi(append(t, s)) = fi

so according to the ‘is_subst’ theorem, we get:

is_substn(mkTerm(o, k, a) ◦ g)

⇒ is_substn(λt : Termn. (mkTerm(o, k, a) ◦ g)(t))

⇒ is_substn(λt : Termn. mkTerm(o, k, a)(g(t)))

⇒ is_substn(λt : Termn. mkTerm(o, k, a)(λi, s. fi(append(t, s))))

⇒ is_substn(λt : Termn. mkTerm(o, k, a, λi, s. fi(append(t, s))))

⇒ is_substn(mkSubstFuncn(o, k, a, f))

QED.
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5.2.15 Definition 15: mkTerm constructor

For the sake of completeness, this is the type of ‘mkTerm’ from Chapter 4:

∀o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncai
).

mkTerm(o, k, a, f)inTerm

In Chapter 4, the actual definition of ‘mkTerm’ was done using a translation of the
concrete ‘mkCTerm’. Here this is not necessary: terms are created directly using
substitution functions. The relation between ‘mkTerm’ and ‘mkSubstFunc’ is simple
using a function of a zero-size tuple:

∀o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncai
).

mkSubstFunc0(o, k, a, f) = λ . mkTerm(o, k, a, f)

5.2.16 Definition 16: sizeof operator

We define an auxiliary ‘sizeof’ function that measures sizes of various objects.
This relies on the ability to convert any substitution function to a term and a list
of variables (as discussed in Chapter 4) — name this ‘sf_to_subst’:

∀n : N, f : SubstFuncn. ∃v : CVarn, b : CTerm.

sf_to_substn(f) = 〈v, b〉 & f = λt : Termn. b[t�/v]�

And now ‘sizeof’ is defined as an overloaded function, with the ‘SubstFunc’ version
using the concrete version:

∀n : N, f : SubstFuncn.

let 〈v, b〉 = sf_to_substn(f) in sizeofn(f) = sizeof(v, b)

∀n : N, v : CVarn, b : CTerm.

sizeof(v, b) = if (∃i : (1...n). b = vi) then 0

else 1 + Σ map(λv1, b1. sizeof(append(v, v1), b1),

bterms_of_term(b))

Intuitively, the ‘sizeof’ function counts the number of operator ids, not including
bound variable terms (all opids that need to be shifted when quoting).

5.2.17 Corollary 17: alpha-renaming preserves size

According to Definition 5.2.16 (sizeof), it is easy to see that modifying bound
names yields a result with the same size:

∀n : N, v1, v2 : CVarn, b1, b2 : BndCTerm.

b1 =α b2[v1/v2] ⇒ sizeof(v1, b1) = sizeof(v2, b2)

This is what allows ‘sizeof’ to be defined on abstract terms in the first place.
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5.2.18 Theorem 18: SubstFunc is mkSubstFunc or a projec-
tion

We now claim that any substitution function (SubstFunc, achieved by some con-
crete term and a list of variables) can be constructed as either a projection function
or by some ‘mkSubstFunc’ application using “smaller” sub-substitution functions.

∀n : N, v : CVarn, b : CTerm.

let f = λt : Termn. b[t�/v]� in

∃i : 1...n. f = πi
n

or ∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
).

f = mkSubstFuncn(o, k, a, g)

Assume n, v, and b given as specified. If ∃i : 1...n. b = vi then it is obvious
that f = πi

n and we’re done. So assuming that b is not among the vs, it is enough
to show:

∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
).

λt : Termn. b[t�/v]�= mkSubstFuncn(o, k, a, g)

Since b is a concrete term, we know:

∃o : OpId, k : N, a : (1...k → N),

v1 : ((i : 1...k) → CVarai), b1 : ((i : 1...k) → CTerm).

b = mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i))

In case some of the v1i occur in v, we can simply rename them to other variables
and the above turns to an α-equality:

∃o : OpId, k : N, a : (1...k → N),

v1 : ((i : 1...k) → CVarai), b1 : ((i : 1...k) → CTerm).

b =α mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i)) (5.4)

& ∀i : 1...k. ∀j : 1...ai, k : 1...n. v1i,j 6= vk (5.5)

Using these,

∀i : 1...k.(λt : Termn+ai . b1i[t�/append(v, v1i)]�) ∈ SubstFuncn+ai

so let:
g = λi : 1...k. λt : Termn+ai . b1i[t�/append(v, v1i)]�

It is now enough to show:

λt : Termn. b[t�/v]�= mkSubstFuncn(o, k, a, g)
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According to Definition 5.2.13 (mkSubstFunc), this goal expands to:

λt : Termn. b[t�/v]�

= λt : Termn. mkTerm(o, k, a, λi : 1...k. λs : Termai . gi(append(t, s)))

so it is enough to show:

∀t : Termn.

b[t�/v]�= mkTerm(o, k, a, λi : 1...k. λs : Termai . gi(append(t, s)))

Letting t as specified, and using (5.4) above, it is enough to show:

mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i))[t�/v]�

= mkTerm(o, k, a, λi : 1...k. λs : Termai . gi(append(t, s)))

Note that it is okay to use (5.4) here — it is an alpha equality, but it is used inside
an ‘·�’ where substituting alpha-equivalent terms does not change the result.

According to the definition of ‘mkTerm’ from Chapter 4, this turns to:

mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i))[t�/v]�

= mkCTerm(o, k, a, λi :1...k. let x=newvarai
(λs : Termai . gi(append(t, s))) in

mkBndCTerm(x�, gi(append(t, x))�))�

which is:

mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i))[t�/v]

=α mkCTerm(o, k, a, λi :1...k. let x=newvarai
(λs : Termai . gi(append(t, s))) in

mkBndCTerm(x�, gi(append(t, x))�))

according to the definition of g, this becomes:

mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i))[t�/v]

=α mkCTerm(o, k, a, λi :1...k. let x=newvarai
(λs : Termai . gi(append(t, s))) in

mkBndCTerm(x�,

b1i[append(t, x)�/append(v, v1i)]��))

and using ?2 (pp. 62), we get:

mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i))[t�/v]

=α mkCTerm(o, k, a, λi :1...k. let x=newvarai
(λs : Termai . gi(append(t, s))) in

mkBndCTerm(x�,

b1i[append(t, x)�/append(v, v1i)]))

Since we assume that b (the ‘mkCTerm’ on the left hand side) is not one of the vs,
the substitution simply goes down recursively. Note that this is true even if b is
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some other variable, since it means that substituting in it will leave it unchanged.
So, beginning with the left hand side (and rewriting using alpha-equalities):

mkCTerm(o, k, a, λi : 1...k. mkBndCTerm(v1i, b1i))[t�/v]

we first need to do the appropriate renamings. We need new variables y that do
not occur in b1 except for existing occurrences of v1. We also need them to be
disjoint from v and t to be able to push the other substitution inside later. So the
left hand side is rewritten into:

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[0/v1i]�, t, v�) in

mkBndCTerm(y�, b1i[y�/v1i])

)[t�/v]

But this will turn out to be overly restrictive — instead of choosing variables that
do not occur in all ts, we could just choose ones that do not occur in ts that survive
when it is substituting the vs into the b1i body:

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) in

mkBndCTerm(y�, b1i[y�/v1i])

)[t�/v]

We can see now that:

∀i, k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) in

vk free_in b1i[y�/v1i] ⇒ none of y� free_in tk� or vk

so we can use ?10 (pp. 65) and rewrite this as:

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) in

mkBndCTerm(y�, b1i[y�/v1i][t�/v]))

From (5.5) we know that v and each of the v1 are disjoint. Together with the way
‘y’ was chosen, this means that we can do the substitutions in parallel:

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) in

mkBndCTerm(y�, b1i[append(y�, t�)/append(v1i, v)]))

It is now possible to change the order and get the ‘·�’ outside the ‘append’:

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) in

mkBndCTerm(y�, b1i[append(t, y)�/append(v, v1i)]))
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Now we can see that the following holds:

let z = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�) in

newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�)

not_free_in b1i[append(t, z)�/append(v, v1i)][0/z]

(substituting 0 for z is simple: z does not occur in b1i[append(t, 0)�/append(v, v1i)]
so there is just one place to substitute.)

Because of this, we can do this renaming:

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) in

mkBndCTerm(y�, b1i[append(t, y)�/append(v, v1i)]))

=α

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) and

let z = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�) in

mkBndCTerm(z�, b1i[append(t, y)�/append(v, v1i)][z/y]))

but since y does not occur free in b1i[append(t, 0)�/append(v, v1i)], substituting it
is simple, again:

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) and

let z = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�) in

mkBndCTerm(z�, b1i[append(t, y)�/append(v, v1i)][z/y]))

=α

mkCTerm(o, k, a,

λi : 1...k. let y = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�, v�) and

let z = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�) in

mkBndCTerm(z�, b1i[append(t, z)�/append(v, v1i)]))

=α

mkCTerm(o, k, a,

λi : 1...k. let z = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�) in

mkBndCTerm(z�, b1i[append(t, z)�/append(v, v1i)]))
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Now, getting back to the main goal, we need to show:

mkCTerm(o, k, a,

λi : 1...k. let z = newvarai
(b1i[append(t, 0)�/append(v, v1i)]�) in

mkBndCTerm(z�, b1i[append(t, z)�/append(v, v1i)]))

=α

mkCTerm(o, k, a,

λi : 1...k. let x = newvarai
(λs : Termai . gi(append(t, s))) in

mkBndCTerm(x�, b1i[append(t, x)�/append(v, v1i)]))

But by the definition of ‘newvar(·)’ from Chapter 4, and the definition of g:

∀i : 1...k.

x = newvarai
(λs : Termai . gi(append(t, s)))

= newvarai
(gi(append(t, 0)))

= newvarai
(b1i[append(t, 0)�/append(v, v1i)]�)

= z

QED.

5.2.19 Corollary 19: Zero size is projection

The proof of both sides of the following is trivial:

∀n : N, f : SubstFuncn. sizeofn(f) = 0 ⇔ ∃i : 1...n. f = πi
n

5.2.20 Corollary 20: Positive size is mkSubstFunc

A fact which is the key for Theorem 5.2.21 (SubstFunc induction) below is:

∀n : N, f : SubstFuncn.

sizeofn(f) > 0

⇔ ∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
).

f = mkSubstFuncn(o, k, a, g)

& sizeofn(f) = 1 + Σk
i=1 sizeofn+ai

(gi)

The (⇐) direction is trivial. Assume n and f given with a positive size, according
to Chapter 4 and Definition 5.2.16 (sizeof), and because f is not a projection,
we know:

∃v : CV arn, b : CTerm.

f = λt : Termn. b[t�/v]�

& sizeofn(f) = sizeof(v, b)

& b not_in v
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So according to Theorem 5.2.18 (SubstFunc is mkSubstFunc or a projection),

∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
).

f = mkSubstFuncn(o, k, a, g)

and it is easy to see that the size argument holds as well by the construction of
Theorem 5.2.18 (SubstFunc is mkSubstFunc or a projection) and Definition 5.2.16
(sizeof).

5.2.21 Theorem 21: SubstFunc induction

Similarly to Definition 5.2.13 (mkSubstFunc), induction is parameterized by the
arity of the function:

∀P : (n : N → SubstFuncn → Prop).

(∀n : N.

∀i : 1...n. Pn(πi
n)

& ∀o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

(∀i : 1...k. Pn+ai
(fi)) ⇒ Pn(mkSubstFuncn(o, k, a, f)))

⇒ (∀n : N, f : SubstFuncn. Pn(f))

Proof: let P : (n : N → SubstFuncn → P) and assume:

∀n : N.

∀i : 1...n. Pn(πi
n) (5.6)

& ∀o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
). (5.7)

(∀i : 1...k. Pn+ai
(fi)) ⇒ Pn(mkSubstFuncn(o, k, a, f))

We need to show:
∀n : N, f : SubstFuncn. Pn(f)

This is proved by (strong) induction on the size of the substitution function, as
defined above. The goal is turned into an equivalent form:

∀s : N.

∀n : N, f : SubstFuncn. sizeofn(f) = s ⇒ Pn(f)

To prove this, we assume that this is true for all values of s smaller than c, which
is some integer:

∀n : N, f : SubstFuncn. sizeofn(f) < c ⇒ Pn(f) (5.8)

and the goal is:

∀n : N, f : SubstFuncn. sizeofn(f) = c ⇒ Pn(f)
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so let n, f , and c be such that sizeofn(f) = c, we need to show: Pn(f).
There are two cases. In the first case, c = 0 — according to Corollary 5.2.19

(Zero size is projection), this implies that:

∃i : 1...n. f = πi
n

which is true by (5.6). In the second case c > 0, and using Corollary 5.2.20
(Positive size is mkSubstFunc), this means that

∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
.

f = mkSubstFuncn(o, k, a, g)

& sizeofn(f) = 1 + σk
i=1 sizeofn+ai

(gi)

which means that the size of f is bigger than each of the gs:

∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
.

f = mkSubstFuncn(o, k, a, g)

& ∀i : 1...k. sizeofn+ai
(gi) < sizeofn(f) = c

and according to (5.8) we get:

∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
.

(∀i : 1...k.Pn+ai
(gi))

& f = mkSubstFuncn(o, k, a, g)

now, using (5.7) we get:

Pn(mkSubstFuncn(o, k, a, g))

or:
Pn(f)

QED.

5.2.22 Theorem 22: SubstFunc recursion

Using Theorem 5.2.21 (SubstFunc induction), we can justify definitions like:

Rn(πi
n) = b(n, i)

Rn(mkSubstFuncn(o, k, a, f)) = c(n, o, k, a, f, λi. rn+ai
(fi))
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Proving this would be standard, but very verbose, so a proof is not given here.
This would be a more full version of the above claim:

∀T : U.

∀b : (n : N → 1...n → T ).

∀c : (n : N → OpId → k : N → a : (1...k → N)

→ ((i : 1...k) → SubstFuncn+ai
) → (1...k → T ) → T ).

∃!R : (n : N → SubstFuncn → T ).

∀n : N, i : 1...n.

Rn(πi
n) = b(n, i)

∀n : N, o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

Rn(mkSubstFuncn(o, k, a, f)) = c(n, o, k, a, f, λi. Rn+ai
(fi))

when a fixed T output type is all that is needed (which is enough for us). When
T is parameterized by the inputs, this gets even more verbose:

∀T : (n : N → SubstFuncn → Univ).

∀b : (n : N → 1...n → (n, πi
n)).

∀c : (n : N → o : OpId → k : N → a : (1...k → N)

→ f : ((i : 1...k) → SubstFuncn+ai
)

→ (i : 1...k → T (n + ai, fi))

→ T (n, mkSubstFuncn(o, k, a, f))).

∃!R : (n : N → f : SubstFuncn → T (n.f)).

∀n : N, i : 1...n.

Rn(πi
n) = b(n, i)

∀n : N, o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

Rn(mkSubstFuncn(o, k, a, f)) = c(n, o, k, a, f, λi. Rn+ai
(fi))

5.2.23 Definition 23: q — quotation function

Defining a quotation function based on Definition 5.2.13 (mkSubstFunc) and Theo-
rem 5.2.22 (SubstFunc recursion) is particularly simple. Usually we would recurse
down the term keeping track of bindings that should not be quoted. In Section 3.5.4
the method that was used to implement ‘rquote’ is to scan down a term struc-
ture, shifting operators up, while keeping track of bound variable names (using
Nuprl’s ‘sweep_up_map_with_bvars’) so bound occurrences are not shifted. Us-
ing ‘mkSubstFunc’ makes this simpler because its recursion never “loses bindings”
until it reaches a base-case projection function. In fact, the MetaPRL [37, 36] re-
flection facility [55], which is based on our work, uses substitution functions as the



101

basic building blocks for bound terms, through the ‘bterm’ operator. Using bound
terms instead of terms as the basic type makes things a little easier, especially in
the context of MetaPRL which uses this approach in its implementation.

‘q’ is therefore defined first on substitution functions:

∀n : N, i : 1...n. qn(πi
n) ≡ πi

n

∀n : N, o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

qn(mkSubstFuncn(o, k, a, f)) ≡ mkSubstFuncn(o, k, a, λi. qn+ai
(fi))

Finally, quotation of terms is defined using the one for substitution functions and
the relation between ‘mkTerm’ and ‘mkSubstFunc’ mentioned above:

∀t : Term. q(t) ≡ (q0(λ. t))(〈〉)

where ‘〈〉’ denotes the empty tuple. Using this relation we get:

∀o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncai
).

q(mkTerm(o, k, a, f))

= (q0(λ. mkTerm(o, k, a, f)))(〈〉)
= (q0(mkSubstFunc0(o, k, a, f)))(〈〉)
= (mkSubstFunc0(o, k, a, λi. qai

(f)))(〈〉)
= (λ. mkTerm(o, k, a, λi. qai

(f)))(〈〉)
= mkTerm(o, k, a, λi. qai

(f))

5.2.24 Theorem 24: q represents atoms

This is the first step in proving that ‘q’ is a valid representation function (i.e., that
it is good for requirements (d) and (e), pp. 84). We need to verify that ‘q’ works
on atomic term:

∀t : Atom. q(t) reps t

So let o be some opid and t be an atom made with it:

t = mkTerm(o, 0, λi. ?, λi. ?)

By Definition 5.2.23 (q) definition:

q(t) = q(mkTerm(o, 0, λi. ?, λi. ?))

= mkTerm(o, 0, λi. ?, λi. ?)

and because terms with shifted opids are canonical:

mkTerm(o, 0, λi. ?, λi. ?) evalsto−−−−−→ mkTerm(o, 0, λi. ?, λi. ?)

According to this,

mkTerm(o, 0, λi. ?, λi. ?) reps mkTerm(o, 0, λi. ?, λi. ?)

is trivially true (the ∀ clause is trivially true since k = 0).



102

5.2.25 Theorem 25: q represents substitutions

The second step is demonstrating that ‘q’ of a substitution function produces a
representation of it:

∀n : N, f : SubstFuncn, t : Atomn. qn(f)(map(q, t)) reps f(t)

We prove this using Theorem 5.2.21 (SubstFunc induction). The base case is when:

∃i : 1...n. f = πi
n

By Definition 5.2.23 (q), we get:

qn(f) = f

⇒ qn(f)(map(q, t)) = f(map(q, t)) = q(ti)

so we need to show:
q(ti) reps ti

which is true by Theorem 5.2.24 (q represents atoms).
Now for the inductive case — we assume:

∃o : OpId, k : N, a : (1...k → N), g : ((i : 1...k) → SubstFuncn+ai
).

∀i : 1...k, r : Atomn+ai . qn+ai
(gi)(map(q, r)) reps gi(r)

& f = mkSubstFuncn(o, k, a, g)

and our goal is:

qn(mkSubstFuncn(o, k, a, g))(map(q, t)) reps mkSubstFuncn(o, k, a, g)(t)

According to Definition 5.2.23 (q) the goal becomes:

mkSubstFuncn(o, k, a, λi. qn+ai
(gi))(map(q, t)) reps mkSubstFuncn(o, k, a, g)(t)

and using Definition 5.2.13 (mkSubstFunc) the goal becomes:

λt : Termn.

mkTerm(o, k, a, λi : 1...k. λs : Termai . qn+ai
(gi)(append(t, s)))(map(q, t))

reps

λt : Termn.

mkTerm(o, k, a, λi : 1...k. λs : Termai . gi(append(t, s)))(t)

The outermost function applications yield this goal:

mkTerm(o, k, a, λi : 1...k. λs : Termai . qn+ai
(gi)(append(map(q, t), s)))

reps

mkTerm(o, k, a, λi : 1...k. λs : Termai . gi(append(t, s)))
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Now the left term is canonical since it has a shifted operator id, so to satisfy
Definition 5.2.6 (reps), it is enough to show:

∀i : 1...k, u : Atomai .

qn+ai
(gi)(append(map(q, t), map(q, u)))

reps gi(append(t, u))

Let r be (under the above qualifiers):

r : Atomnai . r = append(t, u)

and using facts on composing ‘append’ and ‘map’ the goal can be written as:

qn+ai
(gi)(map(q, r)) reps gi(r)

which is exactly our induction hypothesis.
QED.

5.2.26 Theorem 26: q is a representation (requirements (d) & (e))

∀t : Term. q(t) reps t

Proving this is easy using Theorem 5.2.25 (q represents substitutions). First, write
t explicitly:

∃o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncai
).

t = mkTerm(o, k, a, f)

and we need to show:

q(mkTerm(o, k, a, f)) reps mkTerm(o, k, a, f)

Using Definition 5.2.23 (q) the goal is:

mkTerm(o, k, a, λi. qai
(f)) reps mkTerm(o, k, a, f)

Again, since the term on the left is canonical, it is enough to show:

∀i : 1...k, t : Atomai . qai
(f)(map(q, t)) reps fi(t)

which is true by Theorem 5.2.25 (q represents substitutions).

5.2.27 Theorem 27: Upward HOAS

This is an important theorem that claims that when some substitution functions
represent other substitution functions, then plugging them into appropriate terms
makes one represent the other as well. Note that it is desirable to have the reverse
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of this, but it seems like it is impossible (basically, the “behavioral requirement”
placed on substitution functions can hold only on term representations). Another
note is that elegant formulations of ‘reps’ (e.g., ‘A repsB’ defined as ‘A ∼= q(B)’)
have failed satisfying this property.

∀o : OpId, k : N, a : (1...k → N), f, g : ((i : 1...k) → SubstFuncai
).

(∀i : 1...k, t, s : Termai . (5.9)

(∀j : 1...ai.tj reps sj)

⇒ gi(t) reps fi(s))

⇒ mkTerm(o, k, a, g) reps mkTerm(o, k, a, f)

Assume all variables given as specified, our goal is:

mkTerm(o, k, a, g) reps mkTerm(o, k, a, f)

Since the left term is canonical, then by Definition 5.2.6 (reps) it enough to show:

∀i : 1...k, r : Atomai . gi(map(q, r)) reps fi(r)

Assume such i and r are given, an instantiation of (5.9) gives us:

(∀j : 1...ai. map(q, r)j reps rj)

⇒ gi(map(q, r)) reps fi(r)

which is:

(∀j : 1...ai. q(rj) reps rj)

⇒ gi(map(q, r)) reps fi(r)

but the antecedent is true by Theorem 5.2.26 (q is a representation) (actually,
Theorem 5.2.24 (q represents atoms) is sufficient), so we know:

gi(map(q, r)) reps fi(r)

which is what we needed to show.
QED.

5.2.28 Definition 28: unq — unquotation function

An unquote function is defined in the same way as Definition 5.2.23 (q), except that
it unquotes its input. This is similar to the fact that ‘runquote’ mirrors ‘rquote’
(Section 3.5.4), doing the same kind of ‘sweep_up_map_with_bvars’ scan.

The ‘unq’ definition is therefore defined on substitution functions first:

∀n : N, i : 1...n. unqn(πi
n) ≡ πi

n

∀n : N, o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncn+ai
).

unqn(mkSubstFuncn(o, k, a, f)) ≡ mkSubstFuncn(o, k, a, λi. unqn+ai
(fi))



105

(Note that with projection functions both quotation and unquotation are simply
an identity). This is then used to define unquotation of Terms:

∀t : Term. unq(t) ≡ (unq0(λ. t))(〈〉)

And just like the ‘q’ case, we get:

∀o : OpId, k : N, a : (1...k → N), f : ((i : 1...k) → SubstFuncai
).

unq(mkTerm(o, k, a, f))

= (unq0(λ. mkTerm(o, k, a, f)))(〈〉)
= (unq0(mkSubstFunc0(o, k, a, f)))(〈〉)
= (mkSubstFunc0(o, k, a, λi. unqai

(f)))(〈〉)
= (λ. mkTerm(o, k, a, λi. unqai

(f)))(〈〉)
= mkTerm(o, k, a, λi. unqai

(f))

5.2.29 Theorem 29: unq inverse of q

It is easy to see that ‘unq’ is the inverse of ‘q’:

∀t : Term. unq(q(t)) = t. (5.10)

Note, however, that the other side is not always true:

¬∀t : Term. q(unq(t)) = t,

because ‘unq’ is meaningless on terms that are not quoted. If we want both sides
to be true, then we must ensure that t is a representation of some term:

∀t : Term. (∃t′ : Term. t = q(t′)) ⇒ unq(q(t)) = t = q(unq(t)).

It is simple to verify that this holds using (5.10):

q(unq(t)) = q(unq(q(t′)))

= q(t′) (using(5.10))

= t



Chapter 6
Applying Reflection
6.1 Motivating Example

At long last, we get to apply our reflection scheme in Nuprl, using it to accomplish
a syntactic (meta-mathematical) proof. The proof that is used to motivate this is
Tarski’s result regarding the undefinability of truth inside a logic. We begin with
a standard proof that is written in a conventional concrete style1. This original
version appears as a ‘comment object’ at the beginning of the ‘tarski’ theory,
which can be found in Appendix B.2.

A pleasing (and unexpected) result is that we could accomplish this proof in
Nuprl by following the exact same steps that were used in the manual version.
Using the system enables the usual benefits: the proof is formal, providing a
rigorous verification of the original manual version; the proof itself involves a few
complicated and confusing steps that are much easier to deal with when the system
accounts for all details; and it can be used as a pedagogic tool to understand
both this specific proof and the general techniques that are involved in syntactical
and meta-mathematical formal content. To enhance the connection between the
manual and the automatic versions, we use the display form techniques that were
discussed in Section 3.5.3, converting the manual proof text (the comment object)
into a hypertext document with clickable links from it to corresponding parts of
the Nuprl proof. This makes for a good high-level overview that enhances the user-
interaction experience. This technique can be used anywhere in Nuprl, especially
when the color code is incorporated into version 5 of the system that has enhanced
interactive features.

We now continue with an overview of various parts of the ‘reflection’ and
the ‘tarski’ theory files. This overview will expose a few important concerns, and
the relevant discussions will be intermixed. Note that ‘reflection’ contains some
rules that are not needed for ‘tarski’, but are provided for other usages. The
descriptions will usually be brief high-level summaries, focusing on points that
need an explanation. Appendix B contains a full printout of these theories which
can be consulted for a full content listings, exact definition, and theorem proofs.
The presentation involves extensive use of the ellipsis syntactic notation, so we
begin by a brief overview of this facility.

6.2 Extended Syntactic Notation

The notation used in many of the rules depends on varying the numbers of bindings
and subterms. For this, we continue using the Scheme-like ellipsis notation that was

1This proof was written in February 2001 by Stuart Allen. It is interesting to
note that it was written as an example of what we thought would not be possible
due to its usage of a quoted (concrete) free variable name.
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mentioned in Section 3.1. In Scheme, the ellipsis notation is used to specify hygienic
syntax transformation (e.g., in ‘syntax-rules’) rules, so it is fully specified and
unambiguous: it is possible to convert these patterns to explicit notations using
index functions that were used in the previous chapters. Given that this notation
has an exact specification in Scheme, the following description is an informal brief
overview, with a few simple extensions.

It should be mentioned that a similar pattern matching facility could be in-
corporated into Nuprl’s rule specification. Currently, the system provides rather
limited functionality, due to large amounts of existing legacy code combined with
the fact that there was no stressing need for such functionality so far. As a result,
many additional rules are implemented in Lisp code rather than being specified
as theory objects. A richer system is required when dealing with a general logical
framework, which is why the MetaPRL implementation [36] has extensive support
for rich rewrite rule specifications.

The ellipsis notation is used in contexts that have a sequence of syntactical
elements. Such contexts include bindings, subterms, subgoals, and rule arguments.
In a Nuprl rule specification, ‘pattern variables’ are used as template holes, for
example, in the rule:

H ` foo(a)
by FooRule b
* H ` bar(b)
* H, bar(b) ` foo(a)

both ‘a ’ and ‘b ’ are pattern variables, instantiated from the goal which the rule
is applied on, and the argument given to the rule. The ellipsis notation that we
add is a ‘...’ token, which can only be used in a syntactical context that has a
sequence of sub-syntaxes — never as the first element, and usually as the last one.
Whenever ‘...’ is used in a pattern, it means that the previous pattern is allowed
to repeat zero or more times, and all pattern variables that appear in the previous
sub-syntax template are bound to a sequence of the corresponding subparts of
the sequence of matched syntax elements. Usages of ‘...’ can be nested to match
sequences of sequences. This will be clearer given a few examples — the following
should be enough to understand how this work in all cases (note that all of these
are patterns on a left hand side of a rule):

‘foo(a;...)’ Matches all terms that have a ‘foo’ operator id with any number of
subterms, and ‘a’ matches this sequence of subterm syntaxes. For example,
when matched against ‘foo(1;2;3)’, ‘a’ matches the sequence ‘1’, ‘2’, ‘3’,
and when matched against ‘foo()’, ‘a’ matches the empty sequence.

‘foo(a;b;...)’ This matches terms similar to the above, except that the ‘foo’ term
should have at least one subterm. The first subterm is matched to ‘a’, and
the rest matches ‘b’ (as a sequence).

‘foo(0;0;...)’ This matches terms with a ‘foo’ opid and one or more subterms
that are all ‘0’.
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‘foo(bar(a); ...)’ This matches terms that have a ‘foo’ operator id, and zero
or more subterms, each of which has a ‘bar’ operator id and a single sub-
term. ‘a’ matches the sequence of the single subterms of the ‘bar’ subterms.
For example, when matched against ‘foo(bar(1); bar(2))’, ‘a’ matches the
sequence ‘1’, ‘2’.

‘foo(bar(a;b); ...)’ Similar to the above, except that all ‘bar’ subterms have two
subterms each, with ‘a’ bound to the sequence of all first subterms and ‘b’ to
all seconds. For example, when matched against ‘foo(bar(1;2); bar(3;4))’,
‘a’ matches the sequence ‘1’, ‘3’, and ‘b’ matches ‘2’, ‘4’.

‘foo(bar(a;...); ...)’ Similar to the above, except that all ‘bar’ subterms have
zero or more subterms, with ‘a’ bound to the sequence of sequences of these
subterms. For example, when matched against ‘foo(bar(1); bar(2;3))’, ‘a’
matches the sequence containing the sequence ‘1’ and the sequence ‘2’, ‘3’.

‘foo(bar(a;b;...); ...)’ Similar to the above, except that all ‘bar’ subterms have
one or more subterms, ‘a’ matches the sequence of all first subterms, and ‘b’
matches the sequence of the sequences of the rest in all subterms.

‘foo(bar(a;a); ...)’ The thing to note here is that if we want to match ‘bar’
terms with two subterms, the first is an ‘a’ term and the second is some an
arbitrary term then we need some way to distinguish the two. In this text
we use a different font for the two as demonstrated by this template, which
binds ‘a’ to the sequence of the second subterms of the ‘bar’ subterms.

When these pattern variables are used on a rule’s right hand side, they should
appear in exactly the same kind sequence context, including the same nesting level.
This produces a result where each such sequence variable plugs in its values in a
matching number of syntactic elements. For example, the following rule:

H ` foo(bar(a;b;...); ...)
by Blah

* H ` bar(a;b;...)
...

matches on a goal term as specified, and generates a subgoal for every ‘bar’ sub-
term. In addition, sequence variables can be used in contexts that restricts them to
match the same number of elements. For example, ‘foo(bar(a;...); baz(b;...))’
matches ‘foo’ terms with a ‘bar’ and ‘baz’ subterms each containing any number
of subterms, but when used in this rule:

H ` foo(bar(a;...); baz(b;...))
by Blah

* H ` foo(a;b)
...

then a restriction is added so the rule matches only instances where the number
of ‘bar’ subterms is equal to the number of ‘baz’ subterms. (This is an extension
that is not part of the Scheme usage of ellipsis.)
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6.3 The ‘reflection’ theory

6.3.1 term part

The ‘reflection’ theory begins with a definition of a ‘term’ type which will stand
for our abstract terms. Its display form is set to show as ‘Term’, avoiding the
confusion with the built-in ML-level ‘term’ type which is the system’s type for
concrete terms. Several standard items are included to make this a valid type:

• ‘termFormation’ and ‘termEquality’ rules: these are required for all defined
types. The rules are added to the ‘Trivial’ tactic to make the system solve
such goals automatically.

• ‘term_wf’ is a simple theorem stating that the new type is well-formed:
Term ∈ Ui. It is trivially proved with the previous rules.

• ‘init_term’ is an ML code object which adds the above rules to the ‘Trivial’
tactic.

6.3.2 is subst part

‘is_subst’ is the term that is used as a predicate goal for identifying substitution
functions through a syntactical analysis. As previously described, it is used with
an arbitrary number of binders:

is_subst(v,....e).
However, Nuprl has no way for defining a display form (and aliases for the structure
editor) that involve a varying number of binders, so this section begins by defining
such display forms for ‘is_subst0’ through ‘is_subst8’ for most cases.

is substFormation rule

This is the first rule that demonstrates the limitation of Nuprl’s rule facilities. The
rule should handle formation of an ‘is_subst’ type together with its extract —
but this involves all operators with an id of ‘is_subst’, and a single subterm of
arbitrary arity. Because of this, the rule is implemented using two ML functions:

• ‘is_substFormation_rule’ — for the rule;

• ‘is_substFormation_extract_maker’ — for creating extracts.

Using our extended ellipsis notation, this rule is simply:
H ` Ui ext is_subst(v,....e) : Term

by is substFormation [v; ...]
* H, v : Term, ... ` Term ext e
...
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is substEquality rule

For equality of two ‘is_subst’ instances, done through the ML function
‘is_substEquality_rule’ due to varied arity:

H ` is_subst(x,....a) = is_subst(y,....b) ∈ Ui

by is substEquality [v; ...]
* H, v : Term, ... ` a[v/x, ...] = b[v/y, ...] ∈ Term

Note that the substitution notation here looks like the concrete substitution nota-
tion that was introduced in Chapter 4, but it is, in fact, an abstract substitution
since the concrete syntax is not available in Nuprl’s object level language.

6.3.3 term eq part

This contains some definitions, rules, and theorems that are expected from new
Nuprl types. This includes:

• ‘term_eq’ — an equality decision for ‘Term’s. ‘term_eq(a;b;s;t)’ evaluates
‘a’ and ‘b’, and results in ‘s’ or ‘t’ depending on whether they are equal or
not.

• ‘term_eqEquality’ rule — used for ‘term_eq’ terms, and used by a tactic
by the same name that is added to the ‘EqCD’ tactic.

• ‘term_eqReduceTrue’ and ‘term_eqReduceFalse’ — two rules for reducing
a true or a false outcome of ‘term_eq’.

• ‘eq_term’ — a boolean-valued predicate that uses ‘term_eq’2. Defined as
eq_term(x;y) ≡ term_eq(x;y;tt;ff).

• ‘decidable__term_equal’ — a theorem that states that ‘Term’ equality is
decidable. (The format of this name is required by the system.)

6.3.4 TermAuto part

This part contains the important term well-formedness rules that were discussed
in Chapter 4.

isTerm rule

This is the simple top-level rule that turns a ‘Term’ membership (and α-equality)
goal into an ‘is_subst’ goal (as discussed in Section 4.6.1).

H ` t = t ∈ Term

by isTerm

* H ` is_subst(.t)

2This confusing naming scheme is used elsewhere in Nuprl.
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An important thing to note here is that Nuprl uses α-equality to verify that such a
rule can be used, therefore this rule can be used with any two α-equivalent terms:
at the object language level, two α-equivalent terms are indistinguishable, and
this is not an exception. A whole class of problems therefore disappears in one fell
swoop.

isSubstTerm rule

This rule turns a simple instance of ‘is_subst’ with no bindings back into a ‘Term’
membership goal:

H ` is_subst(.t)
by isSubstTerm

* H ` t ∈ Term

The reason that this is needed is closely related to the fact that we can use descrip-
tions that are not fully quoted literal terms: to prove that such a description is a
term, we will need to use additional facts from the hypothesis list. For example,
proving that ‘λx.x+ y’ is a term, when we know that y ∈ Term. See ‘isSubstThin’
below for additional details.

isSubst rule

This is main rule from Section 4.6.1 that scans down a term structure (actually,
an ‘is_subst’ goal), making sure it has the right form. It is implemented using
the ML function ‘is_subst_rule’ due to varied arity of the ‘is_subst’ goal. This
rule has two possible templates, first, for the simple projection case:

H ` is_subst(x,...,v,y,....v)
by isSubst

(no subgoals)

and another, for a shifted operator id of the subterm:
H ` is_subst(x,....op(y,....b;...))

by isSubst

* H ` is_subst(x,...,y,....b)
...

Note that this rule will succeed only for terms that are either fully quoted or can
be rewritten to such. In some cases we need to use ‘isSubstTerm’ above to escape
back to where we can use existing hypotheses, and in some examples such as:

` is_subst(x,y.if p(x) then y else y)

we will have to show that the ‘if’ subterm can be rewritten to just a simple ‘y’,
and use that to perform the rewrite in the goal.
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isTermSubst rule

This rule is used with term equality goals, where the two sides of the equal-
ity are not α-equal, but can be proved as such. It produces a ‘Term’ member-
ship subgoal and equality subgoals for each subterm, implemented by the ML
‘isTermSubst_rule’ function.

H ` op(x1,....b1;...) = op(x2,....b2;...) ∈ Term

by isTermSubst [v; ...; ...]
* H ` op(x1,....b1;...) ∈ Term

* H, v : Term, ... ` b1[v/x1, ...] = b2[v/x2, ...] ∈ Term

...

isSubstThin rule

A rule for thinning out the given variables, provided they are not used in the
original ‘is_subst’ goal. Implemented by the ‘is_substThin_rule’ ML function.

H ` is_subst(x,....b)
by isSubstThin [v; ...]
* H ` is_subst(y,....b)

where v, ... are all from x, ... and none of them are free in b,
and y, ... are the same as x, ... after removing v, ....

There is also a tactic for this rule, ‘IsSubstThin’, which automatically chooses all
possible variables for thinning. Note that proving this rule requires term induction.

This rule is important when used with ‘isSubstTerm’: the fact is that we cannot
convert any ‘is_subst’ goals to term membership — doing this will re-introduce
the problem of exotic terms. We can do this, however, with ‘is_subst’ goals that
have no bound variables. This way, we cannot state any facts on bound variables,
so proving ‘is_subst1(x.x)’ must be done without any help of some hypothesis.
Therefore, ‘isSubstThin’ makes it possible to use ‘isSubstTerm’ properly: in
places where we need to use a hypothesis, we must show that the term in question
has no bindings. For example: when proving

y : Term ` λx.x+ y

we will end up with two subgoals:

• y : Term ` is_subst(x.x), which is easily proved using the projection
function base case of ‘isSubst’, and

• y : Term ` is_subst(x.y), which requires thinning ‘x’ out and converting
the nullary ‘is_subst’ back to term membership using ‘isSubstTerm’ before
the hypothesis can be used.
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TermAuto tactic

This is a “super” tactic that uses ‘isTerm’ to convert a membership or an equality
goal into an ‘is_subst’ goal (and uses ‘isTermSubst’ for non-trivial equalities).
If the goal is an ‘is_subst’ goal it will try to use existing assumptions that prove
the goal (using ‘isSubstTerm’), otherwise, it will continue with an ‘isSubst’ step
and thinning out all unused variables.

This tactic is added to the ‘Auto’ tactic, which makes most easy ‘Term’ goals
easy to solve.

6.3.5 termin/termof part

termin definition

‘termin’ is defined as a new predicate type. The intention is to use to know when
a given term represents a term in some type. A simple definition of such a relation
can be might seem to be:

∀a : Term, A : Ui. a termin A ≡ unq(a) ∈ A

but this cannot work in Nuprl’s type theory, since type membership is used for
well-formedness rather than a predicate. This is the reason for an explicit predicate
that combines unquotation with type membership; this construction is very similar
to the bar types of Constable and Crary [19, 20].

This part contains only the basic definitions that make ‘termin’ into a new type:
a ‘terminEquality’ rule, a ‘terminFormation’ rule, and a ‘termin_wf’ theorem.
The meaning of the predicate is established later through ‘termin_member’; it uses
the ‘down’ operation that is defined in the next part. The display form of ‘termin’
is set to

a ↓∈A

according to the above intuition.
Using ‘termin’, a new type constructor is defined: ‘termof’. Given a type T ,

termof T is the type of all terms that stand for terms of type T . It is easy to
define this constructor in Nuprl as a simple abstraction:

Termof A ≡ {t : Term | t ↓∈A}

6.3.6 up/down part

As discussed in Chapter 3, our reflection implementation contains functions for
concrete quotation and unquotation. These functions are part of the concrete level
of the system, to be used only by the editor and similar low-level subsystems.

At the object language level, we need to define a quotation and an unquota-
tion functions that correspond to the ‘q(·)’ and ‘unq(·)’ functions of Chapter 5.
The problem is that these operations, as their concrete counterparts, operate on
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complete terms — so exposing them to the object language level will mean that it
will be inherently restricted to literal terms. This would not provide access to the
full power of shifted operators which were designed to allow intermixing of quoted
term parts with term descriptions.

The solution for this is therefore exposing user-level variations of ‘q(·)’ and
‘unq(·)’ which we will call ‘up’ and ‘down’3 and display as ‘↑·’ and ‘↓·’. The versions
are supposed to do their work in a step-by-step mode rather than operating on
complete terms. In other words, we need to start with the algorithm that is
implements these functions, and turn it into an algorithm that can works its way
through a sequence of terms, where each step can be used to correctly continue
the sequence. For example, if a Nuprl user has a term ‘unq(1+ 2)’, it is wrong to
provide a simple computation hook for ‘unq’ that evaluates to the unquotation of
the addition — this will work with this example, but will fail if the quoted term
contains a description, such as ‘1+ x’.

Except for the evaluation rules for ‘up’ and ‘down’, this part contains some
standard definitions for the new term types: ‘upFormation’, ‘upEquality’,
‘downFormation’, ‘downEquality’, etc. The ‘up’ related rules differ from the ones
for ‘down’ — ‘up’ is used as an operation from ‘Term’s to ‘Term’s, while ‘down’ goes
from ‘Termof A’ to ‘A’. The reason for the restriction on ‘up’ is that we cannot use
it with all inputs — there are some input values that we cannot find a represen-
tation for, for example, diverging terms have no value; other inputs have no easy
way for finding a representation, like functions where the problem of finding a rep-
resentation is the same as the problem of finding a body for an arbitrary function
(which is a subject of research that is outside the scope of this text [10, 2]).

The main work is implemented by an ML function for performing the necessary
steps: ‘compute_up_down’ in ‘reflection.ml’. This function is then hooked into
Nuprl’s evaluation mechanism using ‘set_compute_hook’. The question is — how
can we implement step-by-step versions of these functions, when ‘q’ and ‘unq’ work
by a recursive term scan that keeps track of bound variables? If we were to naively
push these operations inside their terms (after performing the operator shifting in
the right direction), for example, saying that:

↓foo(x.bar(x;2)) evalsto−−−−−→ foo(x.↓bar(x;2)),

then we would lose information about bindings that we went through.
One possible solution is to turn these operations from ones that expect a simple

subterm argument to operations that expect a bound subterm, where the bindings
indicate variable names that should not be modified. Using this strategy, the

3The arbitrariness of direction can be a little confusing: we talk about ‘quota-
tion levels’ (quotedness), so ‘up’ increases this level and ‘down’ decreases it.



115

computation for the above example would proceed along these steps:

↓foo(x.bar(x;2)) evalsto−−−−−→ foo(x.↓(x.bar(x;2)))
evalsto−−−−−→ foo(x.bar(↓(x.x); ↓(x.2)))
evalsto−−−−−→ foo(x.bar(x;2))

It seems at first like this works as expected, but a problem pops up right after
the first step: the ‘x’ variable term is bound by the ‘↓’ subterm rather than ‘foo’s
subterm. The binding structure is wrong — for example, renaming the outermost
‘x’ will not rename the bound occurrence too. This is evident in the fact that
‘↓(x.x)’ is expected to evaluate to ‘x’, making it invalid.

Theorem 5.2.29 (unq inverse of q) from Chapter 5 provides a hint for a better
solution: if ‘unq’ and ‘q’ cancel each other out, then they can be used to wrap
bound variable subterms in a ‘layer of protection’. This leads to the following
evaluation fragments which are implemented by ‘compute_up_down’:

↓↑t evalsto−−−−−→ t (6.1)

↓op(x.b) evalsto−−−−−→ op(x.↓(b[↑x/x])) (6.2)

↑↓t evalsto−−−−−→ t (6.3)

↑op(x.b) evalsto−−−−−→ op(x.↑(b[↓x/x])) (where ‘op’ is canonical) (6.4)

This evaluation works correctly, and allows free mixing of quoted terms and de-
scriptions. A few things to note here are:

• Another intuition that demonstrates why these rules work is that ‘↑·’ and
‘↓·’ indeed (recursively) increase or decrease the quotedness levels of operator
ides — but since bound variables are always used as is, they need to be
always kept at a the ‘zero’ level. The evaluation fragments make sure that
for every increment/decrement there is a corresponding decrement/increment
that protects such bound instances.

• Because we know that the two operations cancel each other out, they can each
be used as a protective wrapper for bound variable subterms in the evaluation
of the other: the wrapper doesn’t have to actually do its operation, it can
simply serve as a future promise to cancel out when the process reaches that
point.

• According to Theorem 5.2.29 (unq inverse of q), the evaluation fragment for
‘↑↓t ’ (6.3) needs to have a precondition that t is a representation of some
term. See the description of ‘up_down’ below for the way we deal with this.

• Note the restriction on the last rule (6.4): we cannot create a representation
for an arbitrary value, only for canonical ones. (The corresponding ‘↓·’ works
only on shifted terms, which are all canonical.) In fact, we will not use it for
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anything other than terms. The intuition here is that in the last two chapters
we have been dealing with various facts about terms, but now we are working
from within the system so we only deal with ‘Term’s. (It is possible to deal
with other values, but again, this will reflect more than just syntax, falling
outside the scope of this work.)

Additional up/down-related library objects

• ‘down_up’ theorem — this is a simple theorem that states that ↓↑t = t, which
is proved using evaluation fragment 6.1.

• ‘up_down’ theorem — as discussed above, evaluation fragment 6.3 will allow
↑↓t = t for all ‘Term’s. This theorem is later used instead of this fact, and
it ‘voluntarily’ restricts this for ‘Termof Term’s, which is the type of ‘Term’
representations.

• ‘termin_member’ rule — this is the main rule4 that makes the connection
between ‘↓∈ and ‘∈’:

∀t : Term, T : Univi. t ↓∈T ⇒ ↓(a) ∈ T

Ideally, we’d want the other side to hold too, but as mentioned above, ‘∈’
us used for well formedness in Nuprl, so there is no way to define it as a
predicate. However, some restricted version of the other direction is needed
— see Section 6.4 below.

A few rules and theorems and theorems establish various connections between ‘↓∈’,
‘Termof’, ‘↓·’, and ‘↑·’:

• ‘termof_member’ theorem — ∀T : Ui, t : Termof T . ↓t ∈ T

• ‘up_termin’ rule — ∀t : Term. ↑t ↓∈ Term

• ‘up_wf’ theorem — ∀t : Term. ↑t ∈ Term

• ‘up_wf2’ theorem — ∀t : Term. ↑t ∈ Termof Term

Finally, ‘term_downeq’ is defined as a relation that decides whether two terms
represent the same value. Similarly to ‘↓∈’, it is displayed like Nuprl’s ‘=’, except
that there is a ‘↓’ next to the ‘∈’ symbol that denotes the type of the underlying
equality: ‘· = · ↓∈ ·’.

• ‘term_downeq’ definition —
t1 = t2 ∈ T ≡ (t1 ↓∈T & t2 ↓∈T ) c& ↓t1 = ↓t2 ∈ T (This definition uses
Nuprl’s ‘conditional and’ operator.)

4Actually, it is implemented as a theorem that is proved by ‘Fiat’, but it
should be converted to a rule. (It is easier to play around with theorems than it
is to formalize rules.) A few more rules below are written this way.
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• ‘term_downeq_wf’ theorem — ∀T : Ui, t1, t2 : Termof T . (t1 = t2 ↓∈T )inPi

The purpose of this relation is to demonstrate how easy it is to expose existing
Nuprl functionality to the reflected user-accessible level.

6.3.7 reps part

This part defines a representation relation: ‘reps’. According to the same syntactic
intuition5, x reps y ∈ T is displayed as x ↓= y ∈ T . The relation is defined as a
simple abstraction using ‘↓∈’ and ‘↓·’:

x ↓= y ∈ T ≡ x ↓∈T c& ↓x = y ∈ T

In addition, a ‘repst’ is defined as ‘reps’ with a hard-wired ‘Term’ type, and
displayed without the ‘∈ Term’. This is a convenience, given that most of our work
is on ‘Term’ denoting ‘Term’s.

A few well-formedness theorems are provided, and two theorems that establish
the connection between this relation and ‘↑·’:

• ‘up_reps’ theorem — ∀t : Term. ↑t ↓= t ∈ Term

• ‘up_repst’ theorem — ∀t : Term. ↑t ↓= t

Note that ‘up_reps’ is also restricted to ‘Term’s, without this it is impossible to
prove it since we will need to show that t is a term.

6.3.8 term subst part

‘term_subst’ is a new term that represents substitutions, displayed as ·[·/·] —
remember that this is in Nuprl, so it is not the concrete substitution from the
previous chapters. It is implemented by exposing Nuprl’s existing ‘fo_subst’ ML
function, in a similar fashion to the technique that was used to implement ‘↑·’ and
‘↓·’: making ‘fo_subst’ available as a user-accessible step-by-step version, which
pushes substitutions into shifted operators.

There is an important issue that needs clarification before we describe the
actual implementation of this new evaluation fragment. Substitution requires a
(concrete) variable name to substitute — if we deal with abstract syntax, then we
have no concrete names, and it seems like we must give up on having access to
substitution! Indeed, Tarski’s proof was constructed in a way that uses a concrete
name, assuming this style of proofs will not be possible under an abstract syntax
regimen.

For this we go back to the last paragraph of Section 4.3. In that paragraph it is
explained that since the semantics of our abstract terms is based on α-equivalence

5Opinions vary about how intuitive this syntax is.
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classes of concrete terms, then free variables are still accessible — and their se-
mantics is of singleton sets of a single variable name, making a one-to-one corre-
spondence between free variables names in the concrete and in the abstract worlds.
Following this intuition, it is very much possible to use the Nuprl editor to quote
a variable term, and the result, a shifted ‘variable’ operator, is used as just a
symbol. This is identical to the situation in Scheme: in an input syntax, sym-
bols denote variables (bound identifiers), whereas quoted symbols are plain symbol
values. Quoting a Scheme program turns all variable names into symbols, which
is a result of its concrete syntax representation — the high-level hygienic macro
system compensates for the inherent difficulties by using rewrite rules, and low-
level macro facilities implement the high-level system by adding ‘color’ to symbols
which makes it equivalent again to an abstract syntax. The proofs in the ‘tarski’
theory rely heavily on this facility.

We now return to the problem of converting Nuprl’s substitution to a step-
by-step evaluation strategy. This problem is similar in its nature to the imple-
mentation of ‘↑·’ and ‘↓·’, but this case is more severe: we now get a ‘black-box’
function that performs substitution which we want to re-use (as described in Sec-
tion 3.2.3, the actual substitution algorithm that Nuprl uses is complex due to
user-interaction reasons). The main issue here is how do we deal with variable
renaming. Our solution uses several (primitive) substitution steps to implement
each step of our substitution. To avoid confusion, the following description does
not use the ‘·[·/·]’ notation at all; instead, we use the existing ML function name
(and argument syntax) for the built-in substitution, and ‘term_subst(t;v;e)’ for
our user level functionality (which is displayed as ‘t[e/v]’).

The ‘compute_term_subst’ function from ‘reflection.ml’ does the following
to evaluate ‘term_subst(t;v;e)’:

1. Begin by evaluating t, the term we’re substituting in, and v, the quoted
variable (a ‘symbol’) that is to be replaced.

2. If either one is not a shifted operator, then term substitution is undefined,
leave the term as is.

3. If t = v, return e.

4. If t is a quotation a different variable term, return it.

At this point, we know that t is a non-variable shifted term, and that v is a shifted
variable. For example: t = op(x,y.b;z.c) and v = x, where the two subterms (b
and c) might contain instances of both ‘x’ and ‘x’. Our goal is to somehow use
‘fo_subst’ to implement a single step of the

term_subst(op(x,y.b;z.c); x; e)

substitution. Obviously, we cannot simple unquote and use ‘x’, since this will
collide with the real ‘x’ binder. The solution is to force Nuprl to perform the
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necessary variable renamings — this will allow us to enjoy the fruits of a direct
reflection: we will get Nuprl’s sophisticated substitution algorithm for free, we can
be quite sure that it is implemented correctly as it is at the core of the system,
and users enjoy having the same consistent behavior on both the object and the
meta levels.

We proceed with the following steps:

5. We force Nuprl to rename bindings by finding a new variable v that is not
used in any of t’s immediate bindings (using Nuprl’s ‘new_var’), and con-
structing a new term t1. Using our example:

t1 = op(x,y.〈b, v〉;z.〈c, v〉)

(Note that the actual quoted name that is given to ‘term_subst’ (‘x’ in our
example) is never used beyond the first steps above.)

6. Now use the built-in substitution with the new term and, the new variable,
and the same term that is to be replaced:

t2 = fo_subst [v, e] t1

7. We know that t1 is not a variable term (it has the same structure as t),
therefore t2 must share the same top-level structure (same signature, which
include its arities) of t and t1, except that the substitution might force some
renaming. Ignoring the actual subterms which are irrelevant, we get:

t2 = op(x1,y1.?;z1.?)

8. In the above, the ‘x1’, ‘y1’, ‘z1’ variables will be the same as ‘x’, ‘y’, ‘z’
except for some renaming that was forced to avoid capture. This is why we
paired each subterm with the new variable: having the new variable forced
Nuprl to rename identifiers that could be captured (if it wasn’t there then
Nuprl would choose to leave the names), and having the previous subterm
maintains the same usage pattern of the bindings.

It is now easy to see that if these new names are used instead of the original
ones, e.g.:

let b1 = fo_subst [x, x1; y, y1] b

and c1 = fo_subst [z, z1] c

in op(x1,y1.b1;z1.c1)

then it is possible push the substitution one level inside since there are no
name conflicts. The final result is therefore:

op(x1,y1.term_subst(b1;v;e); z1.term_subst(c1;v;e))
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For example, say that we wish to push the ‘term_subst’ in the following term
(we now return to the easier way that these are displayed):

∀x : Term. ... foo(x,y.x+ 1)[2+ x/x] ...

Using the above evaluation fragment, we get this:

∀x : Term. ... foo(x@0,y.x@0+ 1[2+ x/x]) ...

Note the naming scheme that resulted from Nuprl’s substitution. Also note that it
seems like no renaming is needed since there are no occurrences of the ‘x’ symbol in
the body of the term — however, if this renaming would not have happened (e.g.,
if we omit the v parts in step 5 above) then the rightmost x would be captured by
the ‘foo’ instead of its original binding by the qualifier.

Additional term subst-related library objects

• ‘term_subst_wf’ rule — A ‘rule’ (‘Fiat’ theorem) that asserts ‘term_subst’s
well-formedness. (Should be done with a standard ‘term_substFormation’
and ‘term_substEquality’.)

• ‘term_closed’ definition — this is defined as a simple abstraction in the
following way:

term_closed(t) ≡ ∀s, v : Term. t[s/v] = t ∈ Term

This is a nice benefit of exposing Nuprl’s substitution mechanism: we exploit
the fact that a system’s substitution can be used to expose a host of related
properties, and define some of these properties of Nuprl using our exposed
substitution.

• ‘free_in’ definition — an additional substitution-related property that is
exposed through it (as a simple abstraction):

free_in(v; t) ≡ ¬∀s : Term. t[s/v] = t ∈ Term

• ‘term_closed_wf’ and ‘free_in_wf’ theorems — demonstrating the well-
formedness of the above two definitions.

• ‘term_term_closed’ rule — this is another rule that is implemented as a
‘Fiat’ theorem. It states that ‘Termof Term’ is always closed. This reflects
the fact that our (semantic) quotation function always produces a closed
term since any free variables that it encounters are turned to symbols, as
explained above. Note that when viewed from inside the system, there is
no way to use any open terms (except for editor operations), which is why
this fact (like many others that we have seen) talks about a second level of
quotation.
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• ‘up_term_closed’ theorem — a quick lemma that states that

∀t : Term. term_closed(↑t).

It is proved using the previous rule, and needed by the ‘tarski’ theory.

• ‘free_iff_not_closed’ theorem — this theorem states that

∀t : Term. (∃v : Term. free_in(v;t)) ⇔ ¬term_closed(t)

This theorem is quite involved, yet the ‘⇐’ direction is incomplete: to be
able to complete it, we would need a formalization of term induction.

Utilities

Finally, the ‘reflection’ theory contains some utilities that demonstrate the how
the color enhancements can be used for other interactions. Two examples that are
provided implement a hypertext link that can pop up a given library object when
clicked, and a ‘hyper-term’ that pops up its definition. These are used extensively
by ‘TarskiText’ (see below).

6.4 The ‘tarski’ theory

The ‘tarski’ theory demonstrates the interactive Nuprl version of the original
concrete proof. The Nuprl version follows the concrete proof step by step and
can be used to learn how the proof ‘works’ in any level of detail. It is especially
instructive since it is a syntactic proof about syntax, therefore containing some
very interesting pieces, including usages of ‘term_subst’ and symbols (quoted free
variables).

As a quick example, consider this little part of the original proof:
q(t) reps t [thus] Q(t) reps q(r) if t reps r

The claim here, translated to our syntax, is that since ‘↑t ’ represents ‘t ’, then ‘↑t ’
represents ‘↑r ’ if t represents r. This seems like it is correct (and it is), but here’s
a puzzle — is it true that the same holds by using two ‘↑·’s:

t reps r ⇒ ↑↑t reps ↑r ?

Well, this turns out to be false, but it is not easy to realize unless one divorces
oneself of all meaning and intuition and consider the formal rules only. But, now
that we have the right Nuprl machinery, we can easily go and try proving this
fact anyway, and see where we get stuck. The incomplete ‘up_up_repst’ theorem
demonstrates this — following this proof, we finally end up being required to show
that ↑t = ↑r, when we know that ↓t = r, which is clearly false.

The Tarski proof that is presented in this theory requires two additional (sim-
ilar) facts that are given as ‘Fiat’ theorems: ‘qup_termin’ and ‘qsubx_termin’.
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These theorems demonstrate the need for some restricted version of the reverse of
‘termin_member’, which would make these easy to show.

The main entry point to the ‘tarski’ theory should be the ‘TarskiText’ com-
ment object, which is a hyper text version of the original proof. It is extremely
instructive to follow the ‘paper’ proof alongside the interactive Nuprl proof — any
reader of this text is strongly encouraged to try it out6. This will demonstrate the
strong correspondence between the two proofs, as well allowing the reader to ‘get
a feeling’ of how easy it is to use the system, and how complex syntactic games
are reduced to easy games of symbol pushing.

6In case of technical difficulties, email ‘eli@barzilay.org’.



Chapter 7
Conclusions and Future Work
In this work we have demonstrated that syntax can be reflected efficiently and
robustly using direct reflection. Using direct reflection as a design methodology
has been demonstrated as a successful way to implement practical reflection in a
simple and elegant manner, inherently robust, and cheap. This work has already
been used as the foundation for MetaPRL’s recent reflection mechanism [55] (still
under active development).

7.1 Still Needed

As demonstrated by the proof in the ‘tarski’ theory, the reflection system satisfies
our expectations: it is easy to interact with, it is light-weight, and it is powerful
enough to conveniently implement real syntactic-based proofs. However, there is
still work that needs to be done complete it, as mentioned in various parts of
Chapter 6.

• Additional facts need formal justification; Chapter 6 mentions several such
items. Some of these are easy to achieve — e.g., facts that require term
induction were written before we had a formal account of term induction.
Other facts require additional formal work, as they were not fully addressed
in Chapter 4 and Chapter 5. An example of this is the theory’s treatment of
term substitution — ‘term_subst’ of Section 6.3.8 — a proof of the described
method is required.

Such a proof raises another aspect of our work that applies to exposing
other parts of the system to the user level: such a proof can go in two
directions. First, we can add additional low-level facts about the system’s
behavior (proved externally), and describe higher-level functionality using
those. The second approach, described in Chapter 3, is to expose high-level
facts about system functionality, and simply assert that it is true — creating
a form of a ‘reflection by trust’.

In general, the philosophical aspects of this work makes an argument for
the second approach. This might seem like a bad choice, but consider term
substitution: if the substitution algorithm in Nuprl is incorrect, then the
system itself cannot be trusted for any formal use. The low-level justification
of the substitution mechanism is therefore better placed if it is part of proving
the system’s correctness rather than justifying reflected functionality.

• Related to the last point, there are a few discrepancies between the material
in the ‘reflection’ theory and the formal account in Chapter 5. For ex-
ample, the ‘reps’ relation is not defined in the Nuprl theory same way that
it is defined in Chapter 5. Additional work is needed to either modify the
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theory definition, or provide a formal account of the validity of the existing
definition.

• Some facts that were discussed in the formal parts of this work have not
been included in the Nuprl library. Most noticeable in its absence is a term
induction rule. Adding such a rule would not be too difficult, but it will have
to be implemented in ML, as it also deals with terms of varying arities (re-
member that we define induction over substitution functions). The addition
of an induction will also make it possible to prove additional material that
is currently using Fiat.

7.2 Future Work

As for the future, the addition of reflection can be used for a wide variety of old
and new problems, as well as enhancing the reflected capabilities.

• Syntactic reflection is only the first step towards a ‘real’ reflection rule: one
that can be used to reflect the logic itself. Adding this will require exposing
additional objects like sequents and tactics, and will allow meta proofs that
could be used in various ways from simpler to more efficient proofs, as de-
scribed in Knoblock’s thesis [47], and by Allen, Constable, Howe and Aitken
[6].

• While the current implementation seems sufficient, future proofs that will
require significant syntactic functionality will be verbose to the point of being
hard to manage. The current situation is similar to use Lisp’s old ‘defmacro’
which is less convenient for specifying complex syntax transformation rules.
For such usages, it might be better to extend the system with a way of
generating Term → Term transformation functions using a syntactic pattern-
based rewrite mechanism. Again, such a mechanism would be easier to add
to based on existing capabilities, so in the context of Nuprl, it might be
better to enhance built-in functionality first, and in the context of systems
like MetaPRL it will be natural to build on existing functionality.

• The syntactic capabilities of the system can be used for creating formal li-
braries that reason about languages. For example, theorem provers are com-
monly used to reason about properties of languages, and Nuprl is not an
exception — including past and present projects that deal with syntax of
various languages, from formalizing ML and Java, to custom languages that
describe finite automatons when formalizing properties of network protocols.
Such theories are much easier now that the main complexity that is involved
in dealing with syntax and bindings is out of the way.

• Our experience demonstrates that we have the right tools that make expos-
ing additional functionality easy. For example, note that ‘term_downeq’ from
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Chapter 6 is a simple addition that exposes reflected equality. It would be
just as easy to expose additional system functionality, where each of these
extensions opens a window to additional formal material that was either
impossible or hard to discuss when working from within the system. For ex-
ample, exposing the system’s evaluation can make it feasible to build theories
that discuss congruence, run-time complexity1, and more.

• Our formal description and the functionality that is included in the
‘reflection’ theory is currently restricted to terms that represent terms.
If this is extended to any kind of terms, then Nuprl can be better used for
reasoning about code-generation systems, including known problems such as
an un-evaluation function that can construct a source syntax for an arbitrary
function. This will involve justifying and using the ‘↑·’ and ‘↓·’ operators with
fewer restrictions. ‘up_reps’ demonstrates the flavor of such work — given
a good extension, it might be possible to justify a rule that will work on a
wider type range that we know how to lift.

• Finally, there is a lot of syntactic oriented meta-mathematical material that
can be implemented in Nuprl, similar to the Tarski argument that is demon-
strated by the ‘tarski’ theory. Implementing such proofs in Nuprl serves as
a great educational tool that can be used to learn about such proofs interac-
tively, and it can be used for creating new formal content in an area that is
notoriously confusing.

1Nuprl’s evaluation mechanism works with a limit on the number of steps it
can perform.



Appendix A
Glossary
The following is a glossary of some of the key terms used throughout this work.
It should clarify usages of these terms that might be misinterpreted, due to the
fact that their common usage is vague and/or ambivalent. In addition, due to
the nature of discussing reflection, we make more distinction (e.g., talking about
different objects in different “levels”) than common even in logic, formal languages,
and computer science, therefore it is especially important to be precise. These
should not be taken as absolute definitions, but as the intended meaning in the
scope of this work — in an effort to help the reader.

The following is a relevant quote from Kleene [46]:

When we are studying logic, the logic we are studying will pertain to one
language, which we call the object language, because this language (including
its logic) is an object of our study. Our study of this language and its logic,
including our use of logic in carrying out the study, we regard as taking place
in another language, which we call the observer’s language (usually called
“metalanguage” or “syntax language”). Or we may speak of the object logic
and the observer’s logic.

It will be very important as we proceed to keep in mind this distinction
between the logic we are studying (the object logic) and our use of logic in
studying it (the observer’s logic). To any student who is not ready to do so,
we suggest that he close the book now, and pick some other subject instead,
such as acrostics or beekeeping.

This work is an attempt to unify the meta and the object levels, while avoiding
acrostics and beekeeping.

Language: A notational system of communication, based on conventions. Used
with some semantics, being computational, propositional, or iconic, or a
combination of these.

Formal Language: A language that has precise (algorithmic) formation and val-
idation rules (syntactic definitions). Usually has some semantics as well.

Term : The principal relata of the semantics of a language are terms. There are
usually other names for this, depending on the nature of the language, for
example: “words”, “sentences”, “expressions”, and “formulas”.

Syntax : A method for analyzing terms structurally, usually designed to support
some semantics.
Note: in some places “syntax” will be used instead of “syntactic object”, this
is done only when the context makes it clear (e.g., “the numeral “1” is the
syntax of the number one”).

Syntactic Object : Terms and other entities used by the syntactic analysis.
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Semantics: An interpretation that is used to explain core features of a practice
of using possibly complex terms expressively.
Note: in some places, “semantics” is used as the result of an interpretation,
in an way analogous for usage of function names (e.g., “the square root of
2”).

Computational Semantics: A computational semantics specifies methods of
computing with terms as programs or constituents of programs.

Denotative Semantics: Semantics oriented towards truth interpretations.

Semantic Object : An object in the domain of the semantic interpretation func-
tion.

Object Level : The level of semantic objects a language or a system is dealing
with. (For a computer system, this is the user level.)

Meta Level : In the context of some system, the level of this system’s description,
syntactic or other. (For a computer system, this is the implementation level.)

Object Language: The language provided for interaction with some system’s
object level.

Meta Language: The language used for describing the meta-level.

Representation : A relation, normally many-one, between entities for the pur-
pose of reference or proxy. Reference would be using the object to “talk”
about or “denote” the referent. Proxy data is used as a substitute for com-
putation or reasoning that can then be used to make inferences about the
represented entity. Frequently, this is used to refer to some representing
entity, or the operation of finding it.

Meaning/Reference: This is the inverse operation for representation, so if X
represents Y , we say that Y is the meaning of X, or what X references.
As with representation, the common case is in the context of syntax and
semantics.

Picture: Given a representation relation, a picture is a syntactic object that
represents an entity in virtue of its having a structure similar to what it
represents.

Description : A description is a syntactic representation object of an entity in
virtue of a complex (non-pictorial) analysis of its structure, e.g., one that
requires computation.

Quotation : By quotation we mean representing a term by another term picto-
rially. This is usually either a proper quotation, or some form of a direct
description when a proper quotation is impossible.
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Proper Quotation : This is a form of quotation where a term represents itself.
This is always achieved by some context that changes the meaning of the
term from its normal usage to representing itself.

Direct Description : A syntactic description of a term that is non-complex in
the sense that it is still a picture, but still cannot be considered a pictorial
representation due to different structure than what it represents. This is
sometimes used instead of quotations.

Quasi-Quotation : A description of syntax that is made of a mix of quoted parts
and non-direct descriptions (usually computational) of some parts. This can
be taken as a quotation template where some of its parts are not quotations.

Reflection : The phenomenon of unifying the meta-level with the object-level for
some language (or system), allowing it to refer to itself. This occurs when
the language becomes its own meta-language, and it depends on the features
that are reflected. In this work we only deal with languages as the most
important case of a reflected substrate system.
We distinguish two types of reflection:

• A direct reflection is one in which the representation of language features
via its semantics is actually part of the definition of the semantics itself.

• A indirect reflection is one that is not direct. Typically this is achieved
by a semantic description of the language within itself which requires
an additional step demonstrating the correctness of this description.

Reification : The process of converting an abstract meta-level entity to an object-
level representation. In many places this is taken as the opposite operation
to ‘reflection’, but in this work ‘reflection’ is used for the whole self-reference
phenomenon, so this term is hardly used.

Operator Shifting : In a syntax that is made of a recursive structure of opera-
tors, shifting an operator o0 means using a different operator o1 whose usage
results in syntactic expression object denoting a usage of o0. Usages of the
shifted operator is similar to usages of the original operator, except their
inputs are representations of inputs to the original.

Concrete Syntax : Syntax representation that completely matches the actual
input syntax, including any textual information that is later discarded. For
this work, this is used only for syntax where binder names matter.

Abstract Syntax : Syntax represented as data, similar to concrete syntax, except
that irrelevant features are abstracted away. For this work, this is exactly
like concrete syntax modulo alpha-equality. (Note that the “abstract” here
is unrelated to functions, it is only to distinguished the represented syntax
from the actual syntax.)
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Higher Order Abstract Syntax, HOAS : Similar to abstract syntax, except
that binders are encoded using meta-level binders (usually functions).



Appendix B
Theory Files
The reflection theory is summarized in this appendix for reference. It is generated
by Nuprl.

B.1 Reflection Theory

REFLECTION

__________

*C reflection_begin ************ REFLECTION ************

*C begin_term ---------- term ----------

*D term EdAlias Term :: Term== term

*R termFormation

H ` U ext Term

BY termFormation ()

No Subgoals

*R termEquality

H ` Term = Term ∈ U

BY termEquality ()

No Subgoals

*M init_term let TermEquality = (Refine ‘termEquality‘ []) ;;

update_Trivial_additions ‘TermEquality‘ TermEquality ;;

*T term_wf 1 Term ∈ U
*C begin_is_subst ---------- is_subst ----------

*D is_subst0 EdAlias is0 :: is_subst0(.<t:term:E>)== is_subst(<t>)

*D is_subst1 EdAlias is1 :: is_subst1(<x1:var>.<t:term:E>)== is_subst(<x1>.<t>)

*D is_subst2 EdAlias is2 ::

is_subst2(<x1:var>,<x2:var>.<t:term:E>)

== is_subst(<x1>,<x2>.<t>)

*D is_subst3 EdAlias is3 ::

is_subst3(<x1:var>,<x2:var>,<x3:var>.<t:term:E>)

== is_subst(<x1>,<x2>,<x3>.<t>)

*D is_subst4 EdAlias is4 ::

is_subst4(<x1:var>,<x2:var>,<x3:var>,<x4:var>.<t:term:E>)

== is_subst(<x1>,<x2>,<x3>,<x4>.<t>)

*D is_subst5 EdAlias is5 ::

is_subst5(<x1:var>,<x2:var>,<x3:var>,<x4:var>,<x5:var>.<t:term:E>)

== is_subst(<x1>,<x2>,<x3>,<x4>,<x5>.<t>)

*D is_subst6 EdAlias is6 ::

is_subst6(<x1:var>,<x2:var>,<x3:var>,<x4:var>,<x5:var>,<x6:var>.<t:term:E>)

== is_subst(<x1>,<x2>,<x3>,<x4>,<x5>,<x6>.<t>)

*D is_subst7 EdAlias is7 ::

is_subst7(<x1:var>,<x2:var>,<x3:var>,<x4:var>,<x5:var>,<x6:var>,<x7:var>.

<t:term:E>)

== is_subst(<x1>,<x2>,<x3>,<x4>,<x5>,<x6>,<x7>.<t>)

*D is_subst8 EdAlias is8 ::

is_subst8(<x1:var>,<x2:var>,<x3:var>,<x4:var>,<x5:var>,<x6:var>,<x7:var>,

<x8:var>.<t:term:E>)

== is_subst(<x1>,<x2>,<x3>,<x4>,<x5>,<x6>,<x7>,<x8>.<t>)

*R is_substFormation

H ` U ext !call_ml{is_substFormation_extract_maker:s}

BY is_substFormation !call_ml
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Let SubGoals ext = !call_ml{is_substFormation_rule:s}

SubGoals

*R is_substEquality

H ` t1 = t2 ∈ U ext ext

BY is_substEquality !call_ml

Let SubGoals ext = !call_ml{is_substEquality_rule:s}

SubGoals

*C begin_term_eq ---------- term_eq ----------

*D term_eq EdAlias termeq ::

if <a:Term_term>=<b:Term_term> then <s:term:*> else <t:term:E>

== term_eq(<a>; <b>; <s>; <t>)

*R term_eqEquality

H ` if a1=b1 then s1 else t1 = if a2=b2 then s2 else t2 ∈ T

BY term_eqEquality v

H ` a1 = a2 ∈ Term

H ` b1 = b2 ∈ Term

H, v:(a1 = b1 ∈ Term) ` s1 = s2 ∈ T

H, v:((a1 = b1 ∈ Term) → Void) ` t1 = t2 ∈ T

*R term_eqReduceTrue

H ` if a=b then s else t = u ∈ T

BY term_eqReduceTrue ()

H ` s = u ∈ T

H ` a = b ∈ Term

*R term_eqReduceFalse

H ` if a=b then s else t = u ∈ T

BY term_eqReduceFalse ()

H ` t = u ∈ T

H ` (a = b ∈ Term) → Void

*M init_term_eq

let term_eqEquality p =

(Refine ‘term_eqEquality‘ [mk_var_arg (new_invisible_var p)]

THENL

[Id; Id; Id;

OnLastHyp (\i. FoldAtAddr ‘false‘ [2] i

THEN FoldTop ‘implies‘ i

THEN FoldTop ‘not‘ i)]

) p

;;

update_EqCD_additions ‘term_eqEquality‘ term_eqEquality;

*A eq_term x =t y == if x=y then tt else ff

*D eq_term_df <a:term:*> =t <b:term:*>== eq_term(<a>; <b>)

*T eq_term_wf 0 ∀x,y:Term. x =t y ∈ B
*M eq_term_eval

let eq_term_evalC = UnfoldTopC ‘eq_term‘ ANDTHENC RedexC

;;

*T decidable__term_equal 2 ∀s,t:Term. Dec(s = t ∈ Term)

*C begin_TermAuto ---------- TermAuto ----------

*R isTerm H ` t = t ∈ Term

BY isTerm ()

H ` is_subst0(.t)

*R isSubstTerm H ` is_subst0(.t)
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BY isSubstTerm ()

H ` t ∈ Term

*R isSubst H ` t ext ext

BY isSubst ()

Let SubGoals ext = !call_ml{is_subst_rule:s}

SubGoals

*R isTermSubst H ` t ext ext

BY isTermSubst !call_ml

Let SubGoals ext = !call_ml{isTermSubst_rule:s}

SubGoals

*R isSubstThin H ` t ext ext

BY isSubstThin !call_ml

Let SubGoals ext = !call_ml{is_substThin_rule:s}

SubGoals

*C begin_termin_termof ---------- termin/termof ----------

*A termin x ↓∈ t == !null_abstraction

*D termin_df Parens ::Prec(atomrel)::

{->0}<x:term>{<-}{\\? }↓∈ {->0}<t:type>{<-}

== termin(<t>; <x>)

*R terminEquality

H ` (t1 ↓∈ A1) = (t2 ↓∈ A2) ∈ U

BY terminEquality ()

H ` A1 = A2 ∈ U
H ` t1 = t2 ∈ Term

*R terminFormation

H ` U ext t ↓∈ A

BY terminFormation ()

H ` U ext A

H ` Term ext t

*T termin_wf 2 ∀a:Term. ∀A:U. (a ↓∈ A) ∈ U
*M init_termin let terminEquality = (Refine ‘terminEquality‘ []) ;;

update_Trivial_additions ‘terminEquality‘ terminEquality ;;

*A termof Termof A == {t:Term| t ↓∈ A}

*D termof_df Parens ::Prec(postop):: Termof <t:Type:E>== termof(<t>)

*T termof_wf 1 ∀A:U. Termof A ∈ U
*C begin_up_down ---------- up/down ----------

*D up Parens ::Prec(preop):: ↑ <t:term:E>== up(<t>)

*R upFormation H ` Term ext ↑ t

BY upFormation ()

H ` Term ext t

*R upEquality H ` ↑ t1 = ↑ t2 ∈ Term

BY upEquality ()

H ` t1 = t2 ∈ Term

*D down Parens ::Prec(preop):: ↓<t:term:E>== down(<t>)

*R downFormation

H ` A ext ↓t

BY downFormation ()



133

H ` Termof A ext t

*R downEquality

H ` ↓t1 = ↓t2 ∈ A

BY downEquality ()

H ` t1 = t2 ∈ Termof A

*T up_down 2 ∀t:Termof Term. ↑ ↓t = t ∈ Term

*T down_up 1 ∀t:Term. ↓↑ t = t ∈ Term

*T termin_member 0 ∀a:Term. ∀A:U. a ↓∈ A ⇒ ↓a ∈ A

*T termof_member 2 ∀A:U. ∀a:Termof A. ↓a ∈ A

*T up_termin 0 ∀x:Term. ↑ x ↓∈ Term

*T up_wf 2 ∀x:Term. ↑ x ∈ Term

*T up_wf2 2 ∀x:Term. ↑ x ∈ Termof Term

*A term_downeq t1 = t2 ↓∈ A == (t1 ↓∈ A ∧ t2 ↓∈ A) c∧ (↓t1 = ↓t2 ∈ A)

*D term_downeq_df

Parens ::Prec(atomrel)::Index 0 ::

{[SOFT}<t1:term:L>{\\ }= {->0}<t2:term:L>{<-}{\\ }↓∈ {->0}<A:term:L>{<-}{]}

== term_downeq(<A>; <t1>; <t2>)

*T term_downeq_wf 3 ∀A:U. ∀x1,x2:Termof A. (x1 = x2 ↓∈ A) ∈ P
*C begin_reps ---------- reps ----------

*A reps x ↓= y ∈ t == (x ↓∈ t) c∧ (↓x = y ∈ t)

*D reps_df Parens ::Prec(atomrel)::Index 0 ::

{[SOFT}<x:term:L>{\\ }↓= {->0}<y:term:L>{<-}{\\ }∈ {->0}<t:term:L>{<-}{]}

== reps(<t>; <x>; <y>)

*T reps_wf 2 ∀u:U. ∀t:Termof u. ∀x:u. (t ↓= x ∈ u) ∈ P
*A repst x ↓= y == x ↓= y ∈ Term

*D repst_df EdAlias repsterm ::Parens ::Prec(atomrel)::Index 0 ::

{[SOFT}<x:term:L>{\\ }↓= {->0}<y:term:L>{<-}{]}

== repst(<x>; <y>)

*T reps_wf2 2 ∀t,x:Term. (t ↓= x ∈ Term) ∈ P
*T repst_wf 2 ∀t,x:Term. (t ↓= x) ∈ P
*T up_reps 2 ∀t:Term. ↑ t ↓= t ∈ Term

*T up_repst 2 ∀t:Term. ↑ t ↓= t

*C begin_term_subst ---------- term_subst ----------

*D term_subst EdAlias termsubst ::Parens ::Prec(atomrel)::Index 0 ::

{[SOFT}<t:term:L>[{->0}<s:term:L>/<x:term:L>{<-}]

== term_subst(<t>; <x>; <s>)

*T term_subst_wf 0 ∀t1,t2,t3:Term. (t1[t2/t3]) ∈ Term

*A term_closed term_closed(t) == ∀s,v:Term. (t[s/v]) = t ∈ Term

*T term_closed_wf 2 ∀t:Term. term_closed(t) ∈ P
*T term_term_closed 0 ∀t:Termof Term. term_closed(t)

*T up_term_closed 1 ∀t:Term. term_closed((↑ t))

*A free_in free_in(v; t) == ¬(∀s:Term. (t[s/v]) = t ∈ Term)

*T free_in_wf 2 ∀t,v:Term. free_in(v; t) ∈ P
#T free_iff_not_closed 3 ∀t:Term. (∃v:Term. free_in(v; t)) ⇐⇒ ¬term_closed(t)

*C begin_utilities ---------- utilities ----------

*D idform_color_df

{BAD-COLOR(<type:type>,<c:color>)}== !dform_color{<type>:t, <c>:n}

C<c:color-num>{== !dform_color{B:t, <c>:n}

C+<c:color-num>{== !dform_color{B+:t, <c>:n}

C-<c:color-num>{== !dform_color{B-:t, <c>:n}

}<c:color-num>C== !dform_color{E:t, <c>:n}

Q<c:quotedness>{== !dform_color{BQ:t, <c>:n}

}<c:color-num>Q== !dform_color{EQ:t, <c>:n}

*D hypertext EdAlias htext ::(HyperLink):: C10{<<t:text:*>>}10C== !hyperlink{<t>:s}

*D hyperterm EdAlias hterm ::(HyperLink):: C10{d<t:term:*>e}10C== !hyperlink(<t>)

*C reflection_end ************************************

============================== Theorems: Full Printout ==============================

<<< TERM_WF >>>

` Term ∈ U
|

BY Unfold ‘member‘ 0
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|

` Term = Term ∈ U
|

BY TermEquality

<<< EQ_TERM_WF >>>

` ∀x,y:Term. x =t y ∈ B
|

BY Unfold ‘eq_term‘ 0 THEN Auto

<<< DECIDABLE__TERM_EQUAL >>>

` ∀s,t:Term. Dec(s = t ∈ Term)

|

BY Unfold ‘decidable‘ 0 THEN Auto

|

1. s: Term

2. t: Term

` s = t ∈ Term ∨ ¬(s = t ∈ Term)

|

BY UseWitness dif s=t then inl Ax else (inr (λx.x) )e

THEN Auto

|

3. ¬(s = t ∈ Term)

` (λx.x) ∈ ¬(s = t ∈ Term)

|

BY Unfold ‘not‘ 0 THEN Auto

<<< TERMIN_WF >>>

` ∀a:Term. ∀A:U. (a ↓∈ A) ∈ U
|

BY GenUnivCD

|\
| 1. a: Term

| 2. A: U
| ` (a ↓∈ A) ∈ U
| |

1 BY Unfold ‘member‘ 0

| |

| ` (a ↓∈ A) = (a ↓∈ A) ∈ U
| |

1 BY Auto

|\
| 1. a: Term

| ` U ∈ U’
| |

1 BY Auto

\
` Term ∈ U
|

BY Auto

<<< TERMOF_WF >>>

` ∀A:U. Termof A ∈ U
|

BY GenUnivCD

|\
| 1. A: U
| ` Termof A ∈ U
| |

1 BY Unfold ‘termof‘ 0 THEN Auto

\
` U ∈ U’
|

BY Auto
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<<< UP_DOWN >>>

` ∀t:Termof Term. ↑ ↓t = t ∈ Term

|

BY GenUnivCD

|\
| 1. t: Termof Term

| ` ↑ ↓t = t ∈ Term

| |

1 BY ComputeOpid ‘up‘ 0

| |

| ` t = t ∈ Term

| |

1 BY D 1 THEN Auto

\
` Termof Term ∈ U
|

BY Auto

<<< DOWN_UP >>>

` ∀t:Term. ↓↑ t = t ∈ Term

|

BY GenUnivCD

|\
| 1. t: Term

| ` ↓↑ t = t ∈ Term

| |

1 BY ComputeOpid ‘down‘ 0 THEN Auto

\
` Term ∈ U
|

BY Auto

<<< TERMIN_MEMBER >>>

` ∀a:Term. ∀A:U. a ↓∈ A ⇒ ↓a ∈ A

|

BY Fiat

<<< TERMOF_MEMBER >>>

` ∀A:U. ∀a:Termof A. ↓a ∈ A

|

BY GenUnivCD THENA Auto

|

1. A: U
2. a: Termof A

` ↓a ∈ A

|

BY D 2

|

2. a: Term

3. a ↓∈ A

|

BY BLemma ‘termin_member‘

THEN Auto

<<< UP_TERMIN >>>

` ∀x:Term. ↑ x ↓∈ Term

|

BY Fiat

<<< UP_WF >>>

` ∀x:Term. ↑ x ∈ Term

|

BY GenUnivCD

|\
| 1. x: Term
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| ` ↑ x ∈ Term

| |

1 BY Unfold ‘member‘ 0

THEN Refine ‘upEquality‘ []

THEN Auto

\
` Term ∈ U
|

BY Auto

<<< UP_WF2 >>>

` ∀x:Term. ↑ x ∈ Termof Term

|

BY GenUnivCD

|\
| 1. x: Term

| ` ↑ x ∈ Termof Term

| |

1 BY MemTypeCD THENA Auto

| |\
| | ` ↑ x ∈ Term

| | |

1 2 BY Auto

| \
| ` ↑ x ↓∈ Term

| |

1 BY BLemma ‘up_termin‘ THENA Auto

\
` Term ∈ U
|

BY Auto

<<< TERM_DOWNEQ_WF >>>

` ∀A:U. ∀x1,x2:Termof A. (x1 = x2 ↓∈ A) ∈ P
|

BY GenUnivCD

|\
| 1. A: U
| 2. x1: Termof A

| 3. x2: Termof A

| ` (x1 = x2 ↓∈ A) ∈ P
| |

1 BY Unfold ‘term_downeq‘ 0

| |

| ` (x1 ↓∈ A ∧ x2 ↓∈ A) c∧ (↓x1 = ↓x2 ∈ A) ∈ P
| |

1 BY OnHyps [2;3] (Unfold ‘termof‘) THEN Auto

| |\
| | 2. x1: {t:Term| t ↓∈ A}

| | 3. x2: {t:Term| t ↓∈ A}

| | 4. x1 ↓∈ A

| | 5. x2 ↓∈ A

| | ` ↓x1 ∈ A

| | |

1 2 BY BLemma ‘termin_member‘ THEN Auto

| \
| 2. x1: {t:Term| t ↓∈ A}

| 3. x2: {t:Term| t ↓∈ A}

| 4. x1 ↓∈ A

| 5. x2 ↓∈ A

| ` ↓x2 ∈ A

| |

1 BY BLemma ‘termin_member‘ THEN Auto

|\
| 1. A: U
| 2. x1: Termof A
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| ` Termof A ∈ U
| |

1 BY Auto

|\
| 1. A: U
| ` Termof A ∈ U
| |

1 BY Auto

\
` U ∈ U’
|

BY Auto

<<< REPS_WF >>>

` ∀u:U. ∀t:Termof u. ∀x:u. (t ↓= x ∈ u) ∈ P
|

BY GenUnivCD

|\
| 1. u: U
| 2. t: Termof u

| 3. x: u

| ` (t ↓= x ∈ u) ∈ P
| |

1 BY Unfold ‘reps‘ 0

| |

| ` (t ↓∈ u) c∧ (↓t = x ∈ u) ∈ P
| |

1 BY D 2 THEN Auto

| |

| 2. t: Term

| 3. t ↓∈ u

| 4. x: u

| 5. t ↓∈ u

| ` ↓t ∈ u

| |

1 BY BLemma ‘termin_member‘ THEN Auto

|\
| 1. u: U
| 2. t: Termof u

| ` u ∈ U
| |

1 BY Auto

|\
| 1. u: U
| ` Termof u ∈ U
| |

1 BY Auto

\
` U ∈ U’
|

BY Auto

<<< REPS_WF2 >>>

` ∀t,x:Term. (t ↓= x ∈ Term) ∈ P
|

BY GenUnivCD

|\
| 1. t: Term

| 2. x: Term

| ` (t ↓= x ∈ Term) ∈ P
| |

1 BY Unfold ‘reps‘ 0

| |

| ` (t ↓∈ Term) c∧ (↓t = x ∈ Term) ∈ P
| |

1 BY Auto
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| |

| 3. t ↓∈ Term

| ` is_subst0(.(↓t))
| |

1 BY FLemma ‘termin_member‘ [3]

THEN Auto

|\
| 1. t: Term

| ` Term ∈ U
| |

1 BY Auto

\
` Term ∈ U
|

BY Auto

<<< REPST_WF >>>

` ∀t,x:Term. (t ↓= x) ∈ P
|

BY GenUnivCD

|\
| 1. t: Term

| 2. x: Term

| ` (t ↓= x) ∈ P
| |

1 BY Unfold ‘repst‘ 0

| |

| ` (t ↓= x ∈ Term) ∈ P
| |

1 BY BLemma ‘reps_wf2‘ THEN Auto

|\
| 1. t: Term

| ` Term ∈ U
| |

1 BY Auto

\
` Term ∈ U
|

BY Auto

<<< UP_REPS >>>

` ∀t:Term. ↑ t ↓= t ∈ Term

|

BY GenUnivCD THENA Auto

|

1. t: Term

` ↑ t ↓= t ∈ Term

|

BY Unfold ‘reps‘ 0

|

` (↑ t ↓∈ Term) c∧ (↓↑ t = t ∈ Term)

|

BY D 0

|\
| ` ↑ t ↓∈ Term

| |

1 BY BLemma ‘up_termin‘ THENA Auto

\
2. ↑ t ↓∈ Term

` ↓↑ t = t ∈ Term

|

BY BLemma ‘down_up‘ THENA Auto

<<< UP_REPST >>>

` ∀t:Term. ↑ t ↓= t

|
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BY GenUnivCD THENA Auto

|

1. t: Term

` ↑ t ↓= t

|

BY Unfold ‘repst‘ 0

THEN BLemma ‘up_reps‘

THEN Auto

<<< TERM_SUBST_WF >>>

` ∀t1,t2,t3:Term. (t1[t2/t3]) ∈ Term

|

BY Fiat

<<< TERM_CLOSED_WF >>>

` ∀t:Term. term_closed(t) ∈ P
|

BY GenUnivCD

|\
| 1. t: Term

| ` term_closed(t) ∈ P
| |

1 BY Unfold ‘term_closed‘ 0

THEN Auto

\
` Term ∈ U
|

BY Auto

<<< TERM_TERM_CLOSED >>>

` ∀t:Termof Term. term_closed(t)

|

BY Fiat

<<< UP_TERM_CLOSED >>>

` ∀t:Term. term_closed((↑ t))

|

BY GenUnivCD THENA Auto

|

1. t: Term

` term_closed((↑ t))

|

BY BLemma ‘term_term_closed‘

|

` ↑ t ∈ Termof Term

|

BY Auto

<<< FREE_IN_WF >>>

` ∀t,v:Term. free_in(v; t) ∈ P
|

BY GenUnivCD

|\
| 1. t: Term

| 2. v: Term

| ` free_in(v; t) ∈ P
| |

1 BY Unfold ‘free_in‘ 0 THEN Auto

|\
| 1. t: Term

| ` Term ∈ U
| |

1 BY Auto

\
` Term ∈ U
|

BY Auto
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<<< FREE_IFF_NOT_CLOSED >>> (partial)

` ∀t:Term. (∃v:Term. free_in(v; t)) ⇐⇒ ¬term_closed(t)

|

BY D 0 THENA Auto

|

1. t: Term

` (∃v:Term. free_in(v; t)) ⇐⇒ ¬term_closed(t)

|

BY D 0

|\
| ` (∃v:Term. free_in(v; t)) ⇒ ¬term_closed(t)

| |

1 BY D 0 THENA Auto

| |

| 2. ∃v:Term. free_in(v; t)

| ` ¬term_closed(t)

| |

1 BY D 0 THENA Auto

| |

| 3. term_closed(t)

| ` False

| |

1 BY Unfold ‘term_closed‘ 3

| |

| 3. ∀s,v:Term. (t[s/v]) = t ∈ Term

| |

1 BY D 2

| |

| 2. v: Term

| 3. free_in(v; t)

| 4. ∀s,v:Term. (t[s/v]) = t ∈ Term

| |

1 BY Unfold ‘free_in‘ 3

| |

| 3. ¬(∀s:Term. (t[s/v]) = t ∈ Term)

| |

1 BY D 3

| |

| 3. ∀s,v:Term. (t[s/v]) = t ∈ Term

| ` ∀s:Term. (t[s/v]) = t ∈ Term

| |

1 BY D 0 THENA Auto

| |

| 4. s: Term

| ` (t[s/v]) = t ∈ Term

| |

1 BY With dse (D 3) THENA Auto

| |

| 3. s: Term

| 4. ∀v:Term. (t[s/v]) = t ∈ Term

| |

1 BY With dve (D 4) THENA Auto

| |

| 4. (t[s/v]) = t ∈ Term

| |

1 BY Auto

\
` (∃v:Term. free_in(v; t)) ⇐ ¬term_closed(t)

|

BY D 0 THENA Auto

|

2. ¬term_closed(t)

` ∃v:Term. free_in(v; t)

|

BY % To do this we need to know that the goal is decidable

and this is only possible with induction. %
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Id

|

|

INCOMPLETE

B.2 Tarski Theory

TARSKI

______

*C tarski_begin ************ TARSKI ************

*C TarskiText We’re assuming we have the type of terms (dTerme) and a representation

relation between terms (d· ↓= ·e).

a. We assume that if dt ↓= se then dte is closed.

<up_term_closed>

Notation and some simple corrolaries (indicated by "thus"):

(There are also assumptions about substitution into dsubx(·; ·)e and d↑ ·e)

a1. dxe is a variable

a2. dsubx(t; e)e is substitution of term dee for variable dxe in dte

a3. dt ↓= t’ ∧ r ↓= r’ ⇒ subx(t; r) ↓= subx(t’; r’)e

<qsubx_repst>

a4. dsubx(subx(t; r); e) = subx(subx(t; e); subx(r; e)) ∈ Terme

<qsubx_subx>

a5. d↑ t ↓= te

<up_repst>

a6. dt ↓= r ⇒ ↑ t ↓= ↑ re

<qup_repst>

(note that dt ↓= r ⇒ ↑ ↑ t ↓= ↑ re does not work! <up_up_repst> -- Eli)

b. Thus, d↑ ↑ t ↓= ↑ te

<qup_up_repst>

b1. dsubx((↑ t); e) = ↑ subx(t; e) ∈ Terme

<qup_subx>

c1. df(t)e is dsubx((↑ t); subx(x; (↑ x)))e

c2. ds(t)e is dsubx(f(t); (↑ f(t)))e

c3. Thus, ds(t) = subx((↑ t); subx((↑ f(t)); (↑ ↑ f(t)))) ∈ Terme by (a) on d↑ te

<s1>

c4. Thus, ds(t) ↓= subx(t; subx(f(t); (↑ f(t))))e by (b)

<s2>

c. Thus, ds(t) ↓= subx(t; s(t))e

<s_reps>

d1. d¬te is the term built from term dte by the negation-denoting operator

d. Thus dsubx((¬t); e) = ¬subx(t; e) ∈ Terme

<qnot_subx>

The Tarskian argument:

Let dRepsTruth(L; Tr; tr)e where dLe and dTre are properties of terms

and dtre is a term, mean:

1. d∀S:Term. (∃t:Term. S ↓= t) ⇒ L subx(tr; S)e

2. dRespectsNot(Tr; L)e

meaning: d∀t:Term. Tr ¬t ⇐⇒ L t ∧ ¬(Tr t)e

3. dReflectsProp(Tr; tr; Tr)e

meaning: d∀t,qt:Term. qt ↓= t ⇒ {Tr subx(tr; qt) ⇐⇒ Tr t}e
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This is meant to be part of the criterion for dTre being a truth predicate

on dLe, and for dtre to denote dTre (in dxe).

<Tarski>

Then there are no dLe, dTre, dtre such that dRepsTruth(L; Tr; tr)e thus:

4. Assume dRepsTruth(L; Tr; tr)e

{Tarski:t}

5. let dS = s((¬tr)) ∈ Terme

{Tarski:t11}

6. dS ↓= ¬subx(tr; S)e by (5,c,d)

{Tarski:t111}

7. dL subx(tr; S)e by (4,1,6)

{Tarski:t1112}

8. dTr subx(tr; S) ⇐⇒ Tr ¬subx(tr; S)e by (4,3,6)

{Tarski:t11121}

9. dTr ¬subx(tr; S) ⇐⇒ L subx(tr; S) ∧ ¬(Tr subx(tr; S))e by (4,2)

{Tarski:t111211}

10. dTr ¬subx(tr; S) ⇐⇒ ¬(Tr subx(tr; S))e by (9,7)

{Tarski:t1112111}

*. dTr subx(tr; S) ⇐⇒ ¬(Tr subx(tr; S))e by (8,10)

{Tarski:t11121111}

... which is false so (4) is false.

*T qup_termin 0 ∀t:Term. t ↓∈ Term ⇒ ↑ t ↓∈ Term

*T qsubx_termin 0 ∀t,r:Term. t ↓∈ Term ∧ r ↓∈ Term ⇒ subx(t; r) ↓∈ Term

*T push_down_qup 2 ∀t:Term. t ↓∈ Term ⇒ ↓↑ t = ↑ ↓t ∈ Term

*T push_down_qsubx 2

∀t,r:Term.
subx(t; r) ↓∈ Term

⇒ t ↓∈ Term

⇒ r ↓∈ Term

⇒ ↓subx(t; r) = subx((↓t); (↓r)) ∈ Term

#T up_up_repst 3 ∀t,r:Term. t ↓= r ⇒ ↑ ↑ t ↓= ↑ r

*T qup_repst 2 ∀t,r:Term. t ↓= r ⇒ ↑ t ↓= ↑ r

*T qup_up_repst 1 ∀t:Term. ↑ ↑ t ↓= ↑ t

*A subx subx(t; e) == t[e/x]

*T subx_wf 2 ∀t,r:Term. subx(t; r) ∈ Term

*T qsubx_repst 3 ∀t,r,t’,r’:Term. t ↓= t’ ∧ r ↓= r’ ⇒ subx(t; r) ↓= subx(t’; r’)

*T qsubx_subx 1

∀t,r,e:Term. subx(subx(t; r); e) = subx(subx(t; e); subx(r; e)) ∈ Term

*T qup_subx 1 ∀t,e:Term. subx((↑ t); e) = ↑ subx(t; e) ∈ Term

*T qnot_subx 1 ∀t,e:Term. subx((¬t); e) = ¬subx(t; e) ∈ Term

*A f f(t) == subx((↑ t); subx(x; (↑ x)))

*T f_wf 1 ∀t:Term. f(t) ∈ Term

*A s s(t) == subx(f(t); (↑ f(t)))

*T s_wf 1 ∀t:Term. s(t) ∈ Term

*T s1 3 ∀t:Term. s(t) = subx((↑ t); subx((↑ f(t)); (↑ ↑ f(t)))) ∈ Term

*T s2 3 ∀t:Term. s(t) ↓= subx(t; subx(f(t); (↑ f(t))))

*T s_reps 2 ∀t:Term. s(t) ↓= subx(t; s(t))

*A RespectsNot RespectsNot(Tr; L) == ∀t:Term. Tr ¬t ⇐⇒ L t ∧ ¬(Tr t)

*T RespectsNot_wf 2 ∀Tr,L:Term → P. RespectsNot(Tr; L) ∈ P
*A ReflectsProp

ReflectsProp(P; qP; Tr) == ∀t,qt:Term. qt ↓= t ⇒ {Tr subx(qP; qt) ⇐⇒ P t}

*T ReflectsProp_wf 2 ∀P:Term → P. ∀qP:Term. ∀L:Term → P. ReflectsProp(P; qP; L) ∈ P
*A RepsTruth RepsTruth(L; Tr; tr) ==

(∀S:Term. (∃t:Term. S ↓= t) ⇒ L subx(tr; S))

∧ RespectsNot(Tr; L)

∧ ReflectsProp(Tr; tr; Tr)

*T RepsTruth_wf 2 ∀Tr:Term → P. ∀tr:Term. ∀L:Term → P. RepsTruth(L; Tr; tr) ∈ P
*T prop_and_iff 0 ∀A,B,C:P. B ⇒ (A ⇐⇒ B ∧ C) ⇒ {A ⇐⇒ C}

*T prop_iff_trans 0 ∀A,B,C:P. (A ⇐⇒ B) ⇒ (B ⇐⇒ C) ⇒ {A ⇐⇒ C}

*T prop_iff_contra 0 ∀P:P. (P ⇐⇒ ¬P) ⇒ False

*T Tarski 4 ¬(∃Tr:Term → P. ∃tr:Term. ∃L:Term → P. RepsTruth(L; Tr; tr))

*C tarski_end ********************************

============================== Theorems: Full Printout ==============================
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<<< QUP_TERMIN >>>

` ∀t:Term. t ↓∈ Term ⇒ ↑ t ↓∈ Term

|

BY Fiat

<<< QSUBX_TERMIN >>>

` ∀t,r:Term. t ↓∈ Term ∧ r ↓∈ Term ⇒ subx(t; r) ↓∈ Term

|

BY Fiat

<<< PUSH_DOWN_QUP >>>

` ∀t:Term. t ↓∈ Term ⇒ ↓↑ t = ↑ ↓t ∈ Term

|

BY GenUnivCD THENA Auto

|

1. t: Term

2. t ↓∈ Term

` ↓↑ t = ↑ ↓t ∈ Term

|

BY ComputeOpid ‘down‘ 0

|

` ↑ ↓t = ↑ ↓t ∈ Term

|

BY RWHL ‘up_down‘ 0

THEN Auto

THEN Unfold ‘termof‘ 0

THEN Auto

<<< PUSH_DOWN_QSUBX >>>

` ∀t,r:Term.
subx(t; r) ↓∈ Term ⇒ t ↓∈ Term ⇒ r ↓∈ Term ⇒ ↓subx(t; r) = subx((↓t); (↓r)) ∈ Term

|

BY GenUnivCD THENA Auto

|

1. t: Term

2. r: Term

3. subx(t; r) ↓∈ Term

4. t ↓∈ Term

5. r ↓∈ Term

` ↓subx(t; r) = subx((↓t); (↓r)) ∈ Term

|

BY ComputeOpid ‘down‘ 0

|

` subx((↓t); (↓r)) = subx((↓t); (↓r)) ∈ Term

|

BY Auto

|\
| ` is_subst0(.(↓t))
| |

1 BY FLemma ‘termin_member‘ [4]

THEN Auto

\
` is_subst0(.(↓r))
|

BY FLemma ‘termin_member‘ [5]

THEN Auto

<<< UP_UP_REPST >>> (partial)

` ∀t,r:Term. t ↓= r ⇒ ↑ ↑ t ↓= ↑ r

|

BY GenUnivCD THENA Auto

|

1. t: Term

2. r: Term

3. t ↓= r
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` ↑ ↑ t ↓= ↑ r

|

BY OnHyps [3;0] (Unfold ‘repst‘)

|

3. t ↓= r ∈ Term

` ↑ ↑ t ↓= ↑ r ∈ Term

|

BY OnHyps [3;0] (Unfold ‘reps‘)

|

3. (t ↓∈ Term) c∧ (↓t = r ∈ Term)

` (↑ ↑ t ↓∈ Term) c∧ (↓↑ ↑ t = ↑ r ∈ Term)

|

BY D 3 THEN D 0

|\
| 3. t ↓∈ Term

| 4. ↓t = r ∈ Term

| ` ↑ ↑ t ↓∈ Term

| |

1 BY BLemma ‘up_termin‘ THEN Auto

\
3. t ↓∈ Term

4. ↓t = r ∈ Term

5. ↑ ↑ t ↓∈ Term

` ↓↑ ↑ t = ↑ r ∈ Term

|

BY RWHL ‘down_up‘ 0 THENA Auto

|

` ↑ t = ↑ r ∈ Term

|

BY Thin 5

|

|

BY % Obviously bogus! % Id

|

|

INCOMPLETE

<<< QUP_REPST >>>

` ∀t,r:Term. t ↓= r ⇒ ↑ t ↓= ↑ r

|

BY GenUnivCD THENA Auto

|

1. t: Term

2. r: Term

3. t ↓= r

` ↑ t ↓= ↑ r

|

BY OnHyps [0;3] (Unfold ‘repst‘)

|

3. t ↓= r ∈ Term

` ↑ t ↓= ↑ r ∈ Term

|

BY OnHyps [0;3] (Unfold ‘reps‘)

|

3. (t ↓∈ Term) c∧ (↓t = r ∈ Term)

` (↑ t ↓∈ Term) c∧ (↓↑ t = ↑ r ∈ Term)

|

BY D 3 THEN D 0

|\
| 3. t ↓∈ Term

| 4. ↓t = r ∈ Term

| ` ↑ t ↓∈ Term

| |

1 BY BLemma ‘qup_termin‘ THEN Auto

\
3. t ↓∈ Term
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4. ↓t = r ∈ Term

5. ↑ t ↓∈ Term

` ↓↑ t = ↑ r ∈ Term

|

BY RWHL ‘push_down_qup‘ 0 THENA Auto

|

` ↑ ↓t = ↑ r ∈ Term

|

BY HypSubst 4 0 THEN Auto

<<< QUP_UP_REPST >>>

` ∀t:Term. ↑ ↑ t ↓= ↑ t

|

BY GenUnivCD THENA Auto

|

1. t: Term

` ↑ ↑ t ↓= ↑ t

|

BY BLemma ‘qup_repst‘ THENA Auto

|

` ↑ t ↓= t

|

BY BLemma ‘up_repst‘ THENA Auto

<<< SUBX_WF >>>

` ∀t,r:Term. subx(t; r) ∈ Term

|

BY GenUnivCD

|\
| 1. t: Term

| 2. r: Term

| ` subx(t; r) ∈ Term

| |

1 BY Unfold ‘subx‘ 0 THEN Auto

|\
| 1. t: Term

| ` Term ∈ U
| |

1 BY Auto

\
` Term ∈ U
|

BY Auto

<<< QSUBX_REPST >>>

` ∀t,r,t’,r’:Term. t ↓= t’ ∧ r ↓= r’ ⇒ subx(t; r) ↓= subx(t’; r’)

|

BY GenUnivCD THEN Auto

|

1. t: Term

2. r: Term

3. t’: Term

4. r’: Term

5. t ↓= t’

6. r ↓= r’

` subx(t; r) ↓= subx(t’; r’)

|

BY OnHyps [0;5;6] (Unfold ‘repst‘)

|

5. t ↓= t’ ∈ Term

6. r ↓= r’ ∈ Term

` subx(t; r) ↓= subx(t’; r’) ∈ Term

|

BY OnHyps [0;5;6] (Unfold ‘reps‘)

|

5. (t ↓∈ Term) c∧ (↓t = t’ ∈ Term)
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6. (r ↓∈ Term) c∧ (↓r = r’ ∈ Term)

` (subx(t; r) ↓∈ Term) c∧ (↓subx(t; r) = subx(t’; r’) ∈ Term)

|

BY OnHyps [6;5;0] D

|\
| 5. t ↓∈ Term

| 6. ↓t = t’ ∈ Term

| 7. r ↓∈ Term

| 8. ↓r = r’ ∈ Term

| ` subx(t; r) ↓∈ Term

| |

1 BY BLemma ‘qsubx_termin‘ THEN Auto

\
5. t ↓∈ Term

6. ↓t = t’ ∈ Term

7. r ↓∈ Term

8. ↓r = r’ ∈ Term

9. subx(t; r) ↓∈ Term

` ↓subx(t; r) = subx(t’; r’) ∈ Term

|

BY RWHL ‘push_down_qsubx‘ 0

THENA Auto

|

` subx((↓t); (↓r)) = subx(t’; r’) ∈ Term

|

BY HypSubst 6 0 THEN HypSubst 8 0

THEN Auto

<<< QSUBX_SUBX >>>

` ∀t,r,e:Term. subx(subx(t; r); e) = subx(subx(t; e); subx(r; e)) ∈ Term

|

BY GenUnivCD THENA Auto

|

1. t: Term

2. r: Term

3. e: Term

` subx(subx(t; r); e) = subx(subx(t; e); subx(r; e)) ∈ Term

|

BY Unfold ‘subx‘ 0

|

` (subx(t; r)[e/x]) = subx((t[e/x]); (r[e/x])) ∈ Term

|

BY ComputeAtAddr [2] 0 THEN Auto

<<< QUP_SUBX >>>

` ∀t,e:Term. subx((↑ t); e) = ↑ subx(t; e) ∈ Term

|

BY GenUnivCD THENA Auto

|

1. t: Term

2. e: Term

` subx((↑ t); e) = ↑ subx(t; e) ∈ Term

|

BY Unfold ‘subx‘ 0

|

` (↑ t[e/x]) = ↑ (t[e/x]) ∈ Term

|

BY ComputeAtAddr [2] 0 THEN Auto

<<< QNOT_SUBX >>>

` ∀t,e:Term. subx((¬t); e) = ¬subx(t; e) ∈ Term

|

BY GenUnivCD THENA Auto

|

1. t: Term

2. e: Term
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` subx((¬t); e) = ¬subx(t; e) ∈ Term

|

BY Unfold ‘subx‘ 0

|

` (¬t[e/x]) = ¬(t[e/x]) ∈ Term

|

BY ComputeAtAddr [2] 0 THEN Auto

<<< F_WF >>>

` ∀t:Term. f(t) ∈ Term

|

BY GenUnivCD

|\
| 1. t: Term

| ` f(t) ∈ Term

| |

1 BY Unfold ‘f‘ 0 THEN Auto

\
` Term ∈ U
|

BY Auto

<<< S_WF >>>

` ∀t:Term. s(t) ∈ Term

|

BY GenUnivCD

|\
| 1. t: Term

| ` s(t) ∈ Term

| |

1 BY Unfold ‘s‘ 0 THEN Auto

\
` Term ∈ U
|

BY Auto

<<< S1 >>>

` ∀t:Term. s(t) = subx((↑ t); subx((↑ f(t)); (↑ ↑ f(t)))) ∈ Term

|

BY GenUnivCD THENA Auto

|

1. t: Term

` s(t) = subx((↑ t); subx((↑ f(t)); (↑ ↑ f(t)))) ∈ Term

|

BY Assert ds(t) = subx(f(t); (↑ f(t))) ∈ Terme

|\
| ` s(t) = subx(f(t); (↑ f(t))) ∈ Term

| |

1 BY Unfold ‘s‘ 0 THEN Auto

\
2. s(t) = subx(f(t); (↑ f(t))) ∈ Term

|

BY Unfold ‘subx‘ 2

|

2. s(t) = (f(t)[↑ f(t)/x]) ∈ Term

|

BY ComputeWithTaggedTerm
ds(t) = ([0:f(t)][↑ f(t)/x]) ∈ Terme

2

|

2. s(t) = (subx((↑ t); subx(x; (↑ x)))[↑ f(t)/x]) ∈ Term

|

BY Repeat (ComputeOpid ‘term_subst‘ 2)

|

2. s(t) = subx((↑ t[↑ f(t)/x]); subx((↑ f(t)); (↑ ↑ f(t)))) ∈ Term

|
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BY Assert d(↑ t[↑ f(t)/x]) = ↑ t ∈ Terme

|\
| ` (↑ t[↑ f(t)/x]) = ↑ t ∈ Term

| |

1 BY BLemmaWithUnfolds ‘‘term_closed‘‘ ‘up_term_closed‘

THEN Auto

\
3. (↑ t[↑ f(t)/x]) = ↑ t ∈ Term

|

BY HypSubst 3 2 THEN Auto

<<< S2 >>>

` ∀t:Term. s(t) ↓= subx(t; subx(f(t); (↑ f(t))))

|

BY GenUnivCD THENA Auto

|

1. t: Term

` s(t) ↓= subx(t; subx(f(t); (↑ f(t))))

|

BY RWHL ‘s1‘ 0 THENA Auto

|

` subx((↑ t); subx((↑ f(t)); (↑ ↑ f(t)))) ↓= subx(t; subx(f(t); (↑ f(t))))

|

BY BLemma ‘qsubx_repst‘ THEN Auto

|\
| ` ↑ t ↓= t

| |

1 BY BLemma ‘up_repst‘ THEN Auto

\
` subx((↑ f(t)); (↑ ↑ f(t))) ↓= subx(f(t); (↑ f(t)))

|

BY BLemma ‘qsubx_repst‘ THENA Auto

|

` ↑ f(t) ↓= f(t) ∧ ↑ ↑ f(t) ↓= ↑ f(t)

|

BY D 0

|\
| ` ↑ f(t) ↓= f(t)

| |

1 BY BLemma ‘up_repst‘ THEN Auto

\
` ↑ ↑ f(t) ↓= ↑ f(t)

|

BY BLemma ‘qup_up_repst‘ THEN Auto

<<< S_REPS >>>

` ∀t:Term. s(t) ↓= subx(t; s(t))

|

BY GenUnivCD THENA Auto

|

1. t: Term

` s(t) ↓= subx(t; s(t))

|

BY ComputeWithTaggedTerm ds(t) ↓= subx(t; [1:s(t)])e 0

THENA Auto

|

` s(t) ↓= subx(t; subx(f(t); (↑ f(t))))

|

BY BLemma ‘s2‘ THEN Auto

<<< RESPECTSNOT_WF >>>

` ∀Tr,L:Term → P. RespectsNot(Tr; L) ∈ P
|

BY GenUnivCD

|\
| 1. Tr: Term → P
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| 2. L: Term → P
| ` RespectsNot(Tr; L) ∈ P
| |

1 BY Unfold ‘RespectsNot‘ 0 THEN Auto

|\
| 1. Tr: Term → P
| ` Term → P ∈ U’
| |

1 BY Auto

\
` Term → P ∈ U’
|

BY Auto

<<< REFLECTSPROP_WF >>>

` ∀P:Term → P. ∀qP:Term. ∀L:Term → P. ReflectsProp(P; qP; L) ∈ P
|

BY GenUnivCD

|\
| 1. P: Term → P
| 2. qP: Term

| 3. L: Term → P
| ` ReflectsProp(P; qP; L) ∈ P
| |

1 BY Unfold ‘ReflectsProp‘ 0

THEN Unfold ‘guard‘ 0 THEN Auto

|\
| 1. P: Term → P
| 2. qP: Term

| ` Term → P ∈ U’
| |

1 BY Auto

|\
| 1. P: Term → P
| ` Term ∈ U
| |

1 BY Auto

\
` Term → P ∈ U’
|

BY Auto

<<< REPSTRUTH_WF >>>

` ∀Tr:Term → P. ∀tr:Term. ∀L:Term → P. RepsTruth(L; Tr; tr) ∈ P
|

BY GenUnivCD

|\
| 1. Tr: Term → P
| 2. tr: Term

| 3. L: Term → P
| ` RepsTruth(L; Tr; tr) ∈ P
| |

1 BY Unfold ‘RepsTruth‘ 0 THEN Auto

|\
| 1. Tr: Term → P
| 2. tr: Term

| ` Term → P ∈ U’
| |

1 BY Auto

|\
| 1. Tr: Term → P
| ` Term ∈ U
| |

1 BY Auto

\
` Term → P ∈ U’
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|

BY Auto

<<< PROP_AND_IFF >>>

` ∀A,B,C:P. B ⇒ (A ⇐⇒ B ∧ C) ⇒ {A ⇐⇒ C}

|

BY Unfold ‘guard‘ 0 THEN ProvePropWith Auto

<<< PROP_IFF_TRANS >>>

` ∀A,B,C:P. (A ⇐⇒ B) ⇒ (B ⇐⇒ C) ⇒ {A ⇐⇒ C}

|

BY Unfold ‘guard‘ 0 THEN ProvePropWith Auto

<<< PROP_IFF_CONTRA >>>

` ∀P:P. (P ⇐⇒ ¬P) ⇒ False

|

BY ProvePropWith Auto THEN Auto

<<< TARSKI >>>

` ¬(∃Tr:Term → P. ∃tr:Term. ∃L:Term → P. RepsTruth(L; Tr; tr))

|

BY D 0 THENA Auto

|

1. ∃Tr:Term → P. ∃tr:Term. ∃L:Term → P. RepsTruth(L; Tr; tr)

` False

|

BY Unfold ‘RepsTruth‘ 1 THEN ExRepD

|

1. Tr: Term → P
2. tr: Term

3. L: Term → P
4. ∀S:Term. (∃t:Term. S ↓= t) ⇒ L subx(tr; S)

5. RespectsNot(Tr; L)

6. ReflectsProp(Tr; tr; Tr)

|

BY Let dS = s((¬tr)) ∈ Terme THENA Auto

|

7. S: Term

8. S = s((¬tr)) ∈ Term

|

BY Assert dS ↓= ¬subx(tr; S)e

|\
| ` S ↓= ¬subx(tr; S)

| |

1 BY HypSubst (-1) 0 THENA Auto

| |

| ` s((¬tr)) ↓= ¬subx(tr; s((¬tr)))

| |

1 BY RWHRevL ‘qnot_subx‘ 0 THEN Auto

| |

| ` s((¬tr)) ↓= subx((¬tr); s((¬tr)))

| |

1 BY BLemma ‘s_reps‘ THEN Auto

\
9. S ↓= ¬subx(tr; S)

|

BY InstHyp [dSe] 4 THENW Auto

THENA (With d¬subx(tr; S)e (D 0) THEN Auto)

THEN Thin 4

|

4. RespectsNot(Tr; L)

5. ReflectsProp(Tr; tr; Tr)

6. S: Term

7. S = s((¬tr)) ∈ Term

8. S ↓= ¬subx(tr; S)
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9. L subx(tr; S)

|

BY Unfold ‘ReflectsProp‘ 5

THEN InstHyp [d¬subx(tr; S)e;dSe] 5

THENA Auto THEN Thin 5

|

5. S: Term

6. S = s((¬tr)) ∈ Term

7. S ↓= ¬subx(tr; S)

8. L subx(tr; S)

9. Tr subx(tr; S) ⇐⇒ Tr ¬subx(tr; S)

|

BY Unfold ‘RespectsNot‘ 4

THEN InstHyp [dsubx(tr; S)e] 4

THENA Auto THEN Thin 4

|

4. S: Term

5. S = s((¬tr)) ∈ Term

6. S ↓= ¬subx(tr; S)

7. L subx(tr; S)

8. Tr subx(tr; S) ⇐⇒ Tr ¬subx(tr; S)

9. Tr ¬subx(tr; S) ⇐⇒ L subx(tr; S) ∧ ¬(Tr subx(tr; S))

|

BY Assert dTr ¬subx(tr; S) ⇐⇒ ¬(Tr subx(tr; S))e

THENA (Using [‘B’,dL subx(tr; S)e]
(BLemma ‘prop_and_iff‘)

THEN Auto)

THEN OnHyps [9;7] Thin

|

7. Tr subx(tr; S) ⇐⇒ Tr ¬subx(tr; S)

8. Tr ¬subx(tr; S) ⇐⇒ ¬(Tr subx(tr; S))

|

BY FLemma ‘prop_iff_trans‘ [7;8] THENA Auto

THEN OnHyps [8;7] Thin

|

7. Tr subx(tr; S) ⇐⇒ ¬(Tr subx(tr; S))

|

BY FLemma ‘prop_iff_contra‘ [7] THEN Auto



BIBLIOGRAPHY

[1] Eric Aaron and Stuart Allen. Justifying calculational logic by a conventional
metalinguistic semantics. Technical report, Cornell University, Ithaca, New
York, September 1999. 3.3.4

[2] Klaus Aehlig. Normalization by evaluation does not need types. unpublished
draft, January 2001. 6.3.6

[3] William Aitken. Metaprogramming in Nuprl Using Reflection. PhD thesis,
Computer Science Dept., Cornell University, Ithaca, NY, 1994. Unfinished,
not submitted. 2.3.5, 2.5.2, 3.2, 3.3.3, 2, 4.5

[4] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Lan-
guage. PhD thesis, Cornell University, 1987. 4.2

[5] Stuart F. Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph
Kreitz, Lori Lorigo, and Evan Moran. Innovations in computational type
theory using Nuprl. To appear in 2006. 2, 2.3

[6] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William Aitken.
The semantics of reflected proof. In Proceedings of the Fifth Symposium on
Logic in Computer Science, pages 95–197. IEEE, June 1990. 1, 2.3.5, 7.2

[7] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory for the
masses: The POPLmark challenge. In International Conference on Theorem
Proving in Higher Order Logics (TPHOLs), August 2005. 1, 4.7

[8] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Symantics, volume
103 of Studies in Logic. North-Holland, Amsterdam, 1981. 2.4

[9] Alan Bawden. Quasiquotation in lisp. In Partial Evaluation and Semantic-
Based Program Manipulation, pages 4–12, 1999. 2

[10] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization
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