
Foreign Interface for PLT Scheme

Eli Barzilay
Northeastern University

Dmitry Orlovsky
Northeastern University

Abstract

Even a programmer devoted to Scheme may prefer using foreign
libraries in certain situation. Connecting the two worlds involves
glue code, usually using C, which requires significant program-
ming efforts and system expertise. In this paper we describe a
PLT Scheme extension for interacting with foreign code, designed
around a simple philosophy: stay in the fun world, even if it is no
longer a safe sand box. Our system relieves the programmer from
low-level technicalities while keeping the benefits of Scheme as a
better programming environment compared to C.

1 Introduction

Scheme has proved itself as a useful and fun language, good
for both general-purpose and domain-specific usages. However,
schemers cannot assume a closed system; other languages will al-
ways exist, leading to a need for interfacing with functionality that
is accessible through foreign libraries. Such libraries come in many
different flavors, but the popular ‘least common denominator’ has
been, and still is, plain C libraries1. Our goal is to create a mech-
anism within Scheme for smooth interfacing with such foreign li-
braries.

1.1 Background

A foreign interface is a piece of glue code, intended to make it pos-
sible to use functionality written in one language (often C) avail-
able to programs written in another (usually high-level) language.
Such glue code involves low-level details that users of high-level
languages usually take for granted. For example:

• marshaling objects to and from foreign code,
• managing memory and other resources,
• dealing with different calling conventions, implicit function

arguments, etc.

1Different languages can be used to create foreign libraries, “C”
is only used as a generic label.

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Eli Barzilay.

Foreign function interfaces are subsystems that create such glue
code, simplifying an otherwise tedious and error-prone task.

1.2 Foreign Interfaces

There are lots of existing foreign function interfaces; Urban’s FFI
survey [17], although an incomplete project, provides a good dis-
cussion of such systems and relevant issues. Generally speaking,
such interfaces can be classified as either static code generators or
dynamic foreign interfaces. In principle, the two are quite similar:

• A static foreign interface is created and compiled statically,
before running the program that intends to use it;

• A dynamic interface is created at run-time, while the applica-
tion is running.

In practice, the differences are more dramatic:

• A static interface is usually implemented using a C compiler.
The advantage of this approach is that it is easy interface for-
eign code, as most of it is intended to be linked in using a
compiler (for example, C header files are used to describe
an interface), and since most languages are implemented in
C, they provide convenient facilities for calling C functions.
Disadvantages of the static approach include being restricted
to the pre-compiled interface, requiring either a compiler or a
platform dependent binary distribution for such code.

• A dynamic interface is generated at run-time, leading to the
obvious advantage of requiring no C compiler or binary dis-
tributions. This has a significant effect on dynamic languages
like Scheme, where single running REPL can be used to con-
nect to different libraries, supporting exploratory program-
ming in a natural way. The disadvantage of this approach
is that it requires more (platform-dependent) low-level work
such as stack management and creating stubs (glue functions),
while not getting the usual support from a C compiler.

The issues that need addressing are essentially the same ones de-
scribed in Section 1.1, only the approach differs. The technical is-
sues involved in an interface implementation make static interface
generators more popular. It should be noted that it is common to
call these systems “foreign function interfaces” — in the follow-
ing text we prefer “foreign interfaces” as these interfaces deal with
accessing foreign objects as well as foreign calls.

In both the static and the dynamic cases, it is desirable to have some
description of the foreign entities, usually functions, in a way that
can help automate the process of generating the glue layer. In this
context a “function” can be viewed differently depending on your
point of view: from the low-level side, a function is simply a pointer
and a description of how it is called; from the high-level Scheme

side, it is an object that is expected to have the usual function se-
mantics. Interface description languages (IDLs) have a major role
in foreign interface systems — these are languages that express ar-
bitrary function behaviors for both of these viewpoints:

• On the C side, there is the type definition of the function, and
possibly additional information such as input/output pointers,
object ownership, etc.

• In addition to this, there are details that are related to the
Scheme side. For example, automatic memory management
issues, value marshaling, dealing with aggregates (vectors and
structs), and creating new object types.

• On the Scheme side, the result is a plain procedure, like any
other Scheme procedure object.

Ideally, the IDL that is used to describe the interface is rich enough
to express both views while providing enough information to com-
pletely automate the interface generation.

1.3 Implementing a Dynamic Interface

The low-level mechanics of foreign function calls are usually very
demanding: managing functions at the binary level is inherently
platform dependent, and can even require assembly code or other
compiler-specific hacks. Statically, these problems are not too dif-
ficult: simply generate C glue code, and let the C compiler do its
usual work. Doing this efficiently in a dynamic fashion is difficult,
since it is usually not desirable to drag a complete C compiler into
your run-time. Dealing with the dynamic aspects of foreign func-
tions is greatly simplified using a library that handles the low-level
details: we use libffi [11], a library that supports foreign function
call-outs and call-backs.

• A call-out is a normal function call. In a dynamic setting,
we create a “call-interface” object which specifies (binary)
input/output types; this object can be used with an arbitrary
function pointer and an array of input values to perform a call-
out to the function and retrieve its result. Doing this requires
manipulating the stack and knowing how a function is called,
these are details that libffi deals with.

• A call-back is trickier. Our Scheme implementation has sev-
eral fixed C-level functions which can implement arbitrary
Scheme evaluation. A callback is, however, a simple func-
tion pointer — no additional information is available. Modern
systems (e.g, Gnome) that use callbacks allow user to regis-
ter a function pointer together with an arbitrary data pointer,
but there is no standard way for this. A proper solution is
one that allows creating general “C closures” — combining a
function and a data pointer into a single new function pointer.
Again, this is technically challenging, as it requires generat-
ing stub functions at run-time, which, when applied to some
arguments, call the packaged function with the packaged data
pointer and the arguments. Again, libffi provides the re-
quired magic.

libffi is maintained and distributed as part of the GCC project,
but its goal is to provide a portable library. We use it for all
platforms that PLT Scheme targets, including Windows (using a
slightly adapted version that works with Microsoft’s compiler, cour-
tesy of the Thomas Heller [13]).

1.4 Outline

In Section 2 we state the goal of our work, emphasizing our main
design principle. Section 3 describes our implementation, both
the C part of the code and the complementing Scheme module.

Section 4 demonstrates how our system copes with some of the
common and uncommon situations that interface programmers deal
with. We conclude with a related work comparison, and outline fu-
ture plans.

2 Goal: Use Foreign Libraries, Avoid C

Our design follows a simple principle: keep C-level functionality to
a minimum. The core of a system for interfacing foreign libraries
must itself be written in C, but we try to make such functionality
available to Scheme as soon as possible, putting more responsibility
on the Scheme level. When dealing with the many details of the
interface, mainly type declarations and data marshaling, there is a
natural tendency to make a system that is rich in features. We avoid
dealing with such complexities in C when possible, providing just
enough of an interface that makes it possible to do it in Scheme
instead. The combination of a dynamic interface and a minimalistic
C-level implementation that should be complemented by Scheme
code are the main features that make our approach unique.

Switching more responsibility to Scheme comes with benefits that
are familiar to Scheme programmers, but there is an additional ad-
vantage that is important in this particular case: the important is-
sue is generating glue code that bridges the gap between foreign
libraries and the high-level language. In the static case this involves
either complex yet limited C preprocessor acrobatics (e.g., SWIG
[1] goes as far as implementing its own C parser). On the other
hand, Scheme already comes with a superior syntax system, and
PLT Scheme makes this even better with additional language fea-
tures (syntax objects, module system, etc). This syntax system is
much easier for implementing sophisticated glue code with, espe-
cially considering our target crowd which undoubtedly feels more
at home in the Scheme world.

For example, consider the issue of primitive foreign types that
are handled by an interface. Once we can move C integers from
Scheme to C and back, we might consider extending the system to
deal with C enumerations. This raises a few questions regarding the
interface design — how should this C definition:

typedef enum { foo1, foo2, foo3 } foo;

be available for Scheme code?

• Should we provide three integer bindings? If so, how do we
deal with name clashes?

• Otherwise, should we use a mapping from strings to integers?
Maybe use symbols? What about enumerated values that are
or-able bit patterns? How should such a map be implemented:
as a linked list? A vector of constant names? A hash table?

Answers to these questions determine the nature of the C imple-
mentation; once it is written, trying alternatives lead to signifi-
cant maintenance costs. Our design keeps such complications away
from the C level, pushing them up to the Scheme side where there
are better ways to deal with them. For example, the C level part
of our interface does not commit to a specific implementation for
enumerations — it simply exposes C integers. Different strategies
are then implemented in the Scheme part, resulting in easier code
maintenance. In addition, some Scheme aspects are less accessi-
ble from C, making a Scheme solution even more attractive. for
example, implementing enumerations as bindings that use the mod-
ule system to avoid global name-space pollution, or implementing
them as syntax objects (removing run-time lookup costs) are both
much harder to implement in C than in Scheme.

Another important factor in the complexity of the C implementa-

tion is the issue of safety. Scheme is a safe language — as buggy as
your code might be, you never expect the Scheme process to crash:
if such a crash happens, the blame is in the language implementa-
tion. Using C extensions such as the ones that PLT Scheme always
had, changes things a little — the code to blame can be either in
the language implementation, or in the C extension. The invariant
fact is that Scheme code can never be blamed for such crashes —
they are exclusively considered a C-level problem. There is there-
fore a yellow caution tape around code that can be blamed for such
crashes: it lies exactly on the language boundaries, C on one side
and Scheme on the other.

A dynamic foreign function interface inevitably breaks this prop-
erty: bad Scheme code that defines an interface to a foreign func-
tion can specify an integer argument where a pointer is expected,
leading to a crash (at best). Using dynamic interface systems does
not seem so bad though — a foreign function definition is written
in Scheme, but conceptually it is perceived as part of the C world.
Scheme code, with the exception of such definitions, is still as safe
as it has always been, the yellow caution tape is moved just a little
so it surrounds Scheme definitions of foreign interfaces too. This
point drives a dynamic foreign interface system to try to be as safe
as possible: if function interfaces are the only things that can lead
to crashes, then it is desirable to make the system safe in all other
respects. For example, when dealing with pointers (arrays referenc-
ing, allocations, garbage collection) safety issues go in the C code,
making it much more complicated than it would otherwise be.

In contrast, our implementation extends traditional dynamic inter-
face systems by exposing more ‘dangerous’ operations. Function-
ality that had to be part of the C world is now accessible in Scheme,
moving the yellow tape again to encompass more Scheme code.
The average programmer is not concerned with this extra function-
ality, but interface implementors can now deal with more foreign
code without leaving Scheme. Many design decisions that usually
affect the C interface can now be pushed up to the Scheme level.

The issue of safety is now related to the module system: the new
foreign interface bindings are enclosed in a module. If a Scheme
process crashes, the blame is either on C code, or on Scheme code
that uses this module: such code is therefore taken as substituting C
code, potentially suffering from C’s usual illnesses. Code that does
not use this module is expected to be as safe as it previously was.

To summarize, the yellow caution tape surrounds more Scheme
code now: it lies at the C/Scheme language border except for code
that uses the new module which is inside the tape. In essence,
using the a Scheme module is similar to a using Modula-3’s [12]
‘UNSAFE’ keyword to declare unsafe code. Quoting Harbison [12,
Section 13.3.1] from the Modula-3 book:

Modula-3 also provides unsafe features, but it differs from
many other languages in isolating those features. The unsafe
language features are accessible only in interfaces and modules
that are labeled by the keyword UNSAFE. [. . .] When all mod-
ules and interfaces are safe, Modula-3 guarantees that there will
be no unchecked run-time errors. By introducing UNSAFE, the
programmer assumes part of that burden.

Our system is slightly different in that Scheme modules can provide
additional functionality for interface writers, meaning that they will
not provide a safe interface, making them have a status similar to
that of the new module. This means that rather than a fixed set of
unsafe language features, we have a system where these features
can also be extended.

An example of this design philosophy is our use of pointers. First,

a new Scheme pointer object is introduced, then low-level func-
tions that deal with pointers are added. These are procedures that
allocate memory blocks (using one of several ‘malloc’ variants),
free blocks (for GC-invisible blocks), reference pointers, and set
values at a pointer locations. This new functionality is useful in
itself, even when there are no foreign libraries to interface with.
For example, the procedural part of SRFI 4 [6] can now be trivially
implemented in Scheme. Several foreign interfaces have a similar
generic ‘pointer’ object, but it is usually viewed as a last-resort ob-
ject when an unknown pointer is returned2 or when an interface is
too lightweight for proper types3 — this is in contrast to our view,
where a pointer object is taken as part of the fundamental frame-
work that makes Scheme a viable C substitute for glue code.

3 Implementation

Our implementation consists of a C part, implementing the low-
level functionality, and a Scheme part that builds on top of it. The
C part of our interface is available as a built-in ‘#%foreign’ module
which is part of the MzScheme core of PLT Scheme (it is part of the
MzScheme executable). This implements the thin interface, provid-
ing just enough to make it possible to fill in the gaps using Scheme.
This module is therefore intended to be used only by the Scheme
part of our interface: the ‘(lib "foreign.ss")’ module which is
part of MzLib, serving as a wrapper around the internal bindings.
For brevity, we refer to the Scheme module as ‘foreign’.

The ‘#%foreign’ functionality that is implemented in C is de-
scribed in Section 3.1, and the Scheme ‘foreign’ module is de-
scribed in Section 3.2.

3.1 The ‘#%foreign’ Module: C-Level Interface

The C implementation can be roughly divided into three parts, de-
scribed in the following sections. Most of this is unrelated to for-
eign libraries, but providing the framework that make such interac-
tions possible, and making Scheme rich enough to substitute C.

3.1.1 C Types

C-types4 lie at the core of our system, as they provide the basic
specifications for data that is passed on to and back from foreign
libraries. We need some way to specify the correlation between
tagged Scheme values and the various C types. This mapping is not
one-to-one: a single C type can be interpreted as several Scheme
types, and a single Scheme type can be translated to different C
types. We implement C type objects for this, available as new
first-class Scheme values, accessible through ‘#%foreign’ bind-
ings. Each C type object has three main parts:

• The actual C type that it represents (a libffi type descriptor),
• Code that translates corresponding Scheme objects to C,
• Code that translates such C values to Scheme objects.

In addition, there is some utility information such as a predicate,
byte size and alignment. The translation code for these primitive
C types is implemented in C. Table 1 presents a summary of the
current built-in primitive types5.

2For example, the SWIG manual uses malloc, realloc and
free as a simple interface example which uses pointer objects.

3Our cpointer type pre-existed for PLT Scheme extensions,
and was intended for “extensions with modest needs”.

4Again, “C” is only used as it reflects binary level objects.
5The name convention that we have used is that a type called

‘foo’ is available in Scheme as a ‘ foo’ binding.

Primitive Type Usage

void
returns a Scheme void value when used as an
output type

int8, . . . , int64 integer types in various sizes
uint8, . . . ,
uint64

non-negative integers

byte, word, int,
uint

aliases for uint8, uint16, int32, and
uint32 respectively

long, ulong
aliases for 32- or 64-bit integers, depending on
the meaning of ‘long’ for the current platform

fixint, ufixint,
fixnum, ufixnum

versions of integers (int and long resp.) that
assume fitting into an immediate Scheme fixnum
integer

float, double floating point numbers (inexacts)

bool booleans (as C integers)

bytes
byte-strings (plain char strings and memory
blocks represented as byte-strings)

string/ucs-4,
string/utf-16

Unicode string types

path, symbol
path strings and symbol names as strings
(interned when used as an output type)

pointer
a ‘cpointer’ object encapsulating a pointer value
and an optional tag, #f is used for a NULL
pointer

scheme
a Scheme Object* pointer, for any Scheme
boxed value, this will be its actual pointer

Table 1. Primitive types

Users can create new types in two flavors:

• User-defined types are made by the ‘makectype’ primitive,
and are analogous to primitive types. To create such a type a
programmer has to:

1. Choose the set S1 of Scheme objects that the new type
should handle. This can be any set — combination of
several Scheme types, subsets, or a few random values.

2. Choose an existing C type T as a base type. This type
handles some set S2 of Scheme objects.

3. Write two procedures: one that translates an S1 value to
S2 and one that goes the other way.

4. Apply ‘makectype’ on T and the two translators.
When the new C type is used to send values to foreign code
(function arguments, or setting pointers), the first translator
is used and processing continues with T , and when receiving
values from foreign code (return values or pointer references),
T is used first and the second translator is then applied. The
implementation of user types does not involve libffi, which
only sees primitive types.

• New struct types are created from a list of existing types us-
ing the ‘makecstructtype’ primitive. This is mainly imple-
mented by libffi since it describes a new low-level data type
with new size and alignment information. On the Scheme side
the resulting primitive type is similar to a pointer, but when
it is used to send or receive values, the contents of the pointer
is copied rather than the pointer itself.

No additional functionality is implemented at the C level for these
types except trivial accessors and size/alignment information. Ad-
ditional abstraction layers like enumerations and struct constructors
and deconstructors are implemented in Scheme. As a result, we
don’t have to commit to a specific marshaling scheme at the binary
level (in fact, the Scheme part of the interface implements two dif-

ferent marshaling schemes for each of these cases).

3.1.2 Pointers

As mentioned above, pointers are an integral part of our interface,
exposed as useful Scheme objects. A Scheme pointer object en-
capsulates the actual pointer value (adding an extra level of indirec-
tion), and a ‘tag’ which is an arbitrary Scheme object. C functional-
ity is limited to a usable minimum: allocating memory blocks (us-
ing various allocator functions — either through the garbage collec-
tor, or raw malloc), referencing and setting pointed values (given a
type), and pointer equality.

Again, functionality implemented by the C level is kept to a min-
imum. For example, the tag values that are attached to pointers
can be used to enforce a type for referencing and setting a pointed
value, but such a design can be better implemented and enforced in
Scheme, so these tags are ignored by the C part of the interface.

3.1.3 Interfacing Foreign Functionality

So far, all C-level functionality is useful by itself, extending Scheme
so it can handle machine-level raw data. The final piece of the C
part of our interface is the one that actually deals with foreign li-
braries. First, there is functionality for opening a dynamic library
and pulling out objects. These objects can be used as pointer ob-
jects, so it is possible to both reference and change their values (use-
ful for libraries that contain user-modifiable customization hooks).

Dealing with function values is separated into function calls that
we can do (“callouts”) and calls from foreign code to our func-
tions (“callbacks”). This is where libffi makes the implementa-
tion much easier. Two Scheme-accessible procedures, fficall and
fficallback, are in charge of converting C functions to Scheme
(callouts) and Scheme procedures to C (callbacks) respectively. At
the Scheme level, these procedures are used by a new cprocedure
type constructor, which provides a symmetric ‘marshaling’ inter-
face for both ways of this conversion, so users are not aware of any
differences in the underlying translation mechanism.

Bindings that are implemented by the C part of our implementation
and made available through the ‘#%foreign’ module are listed in
Table 2. This, together with Table 1, is a complete summary of the
C-level implementation. Again, ‘#%foreign’ is not intended for
use outside of our ‘foreign’ implementation (described next), but
many of these procedures are re-exported by ‘foreign’.

3.1.4 Garbage Collection Issues

There are some important memory management issues that should
be mentioned at this point: a moving garbage collection, such as
the one used by the precise PLT Scheme version (mzscheme3m)
complicates things considerably when foreign code interacts with
objects on the (GC-visible) Scheme heap. There are certain objects
that should not move in memory, most notably, the callable func-
tion pointers generated by libffi to implement C closures must
not move, so we need to take extra care in allocating these using
plain malloc, where the garbage collector does not touch them.
Callbacks are especially fragile in this aspect: when C code calls
Scheme code the garbage collector might be triggered and any GC-
visible pointers that the C function might use will inevitably be in-
validated. This problem does not have an easy solution — either
memory is managed by a non-moving collector possibly manag-
ing different memory regions using different collectors (this solu-
tion is impossible with PLT Scheme’s precise GC), or doing manual
management. The C implementation takes care of this when deal-

Primitive Bindings Usage
ffi-lib, ffi-lib?,
ffi-lib-name

open a foreign library and related
functionality

ffi-obj, ffi-obj?,
ffi-obj-lib, ffi-obj-name

get a foreign object pointer from
a library and related functionality

make-ctype,
make-cstruct-type, ctype?,
ctype-basetype,
ctype-scheme->c,
ctype-c->scheme,
ctype-sizeof, ctype-alignof

Handling C type descriptor
objects (see Section 3.1.1)

cpointer?, cpointer-tag,
set-cpointer-tag!, ptr-ref,
ptr-set!, ptr-equal?

Handling C pointer objects (see
Section 3.2.2)

malloc, end-stubborn-change,
free, make-sized-byte-string,
register-finalizer

Interface for the standard C
malloc and other allocators that
are used in MzScheme, and
related memory management
functions

ffi-call, ffi-callback,
ffi-callback?

creating a call-out object (a
Scheme procedure that calls a
foreign function when applied)
from a C pointer and creating
callbacks (objects that can be
passed onto foreign functions as
function pointers) from Scheme
procedures, both functions accept
an input type list and an output
type

Table 2. Primitive ‘#%foreign’ bindings

ing with libffi objects, but nothing else. If a movable pointer is
passed on to a C function which can use Scheme callbacks or oth-
erwise retain it, then it is the responsibility of the Scheme level to
deal with copying these values to non-movable memory (using the
system’s raw malloc which is accessible in Scheme). The Scheme
part of our interface simplifies some of these issues, but there is
no general solution when (potentially misbehaved) foreign code is
involved, since such code is ignorant of any memory management
issues for objects it does not “own”.

A related issue is dealing with pointers that can be contained
in other objects. The Scheme-visible ‘malloc’ function uses
atomic allocation by default except for allocating a pointer- or
a scheme-based type. User-created struct types are, however,
problematic because they can hold both pointers and other values.
Our implementation uses only atomic memory blocks for these,
which works as long as there are no GC-able pointers in structs,
which so far was not a problem. We have a plan for dealing with
such pointers, in case a solution is needed: expand new struct types
with a map of contained GC-able pointer offsets. In any case, users
should be aware of the fact that memory blocks are moved and use
raw-malloced pointers as necessary when callbacks or library ref-
erences are involved.

3.2 The foreign Module: Scheme-Level Inter-
face

At the Scheme level, we have added a new ‘(lib "foreign.ss")’
module to MzLib. Scheme programmers should use this module
which complements the built-in ‘#%foreign’ module. The purpose
of this module is to re-export some useful parts of ‘#%foreign’
with an additional degree of sanity and convenience. For example,
‘getffiobj’ is a convenient procedure that combines ‘ffilib’ to
open a library, ‘ffiobj’ to retrieve a pointer, and ‘ptrref’ to con-
vert it into a Scheme value. In addition, it builds a layer of ad-

Defined Type Usage
string/utf-8,
string/locale,
string/latin-1

various C strings, using different encoding

string
uses one of the existing string types, depending
on the value of the default stringtype
parameter; ‘#f’ is used as a NULL value

file
similar to the path type, except that path names
are resolved using expandpath

string/eof
similar to string, but in case of #f (NULL), an
end-of-file object is returned

enum, bitmask

these are actually functions that consume a list
of symbols, and create an integer-mapping type
that translates a single symbol (enum) or a list
of symbols (bitmask) to an integer

Table 3. Simple types defined by the Scheme module

ditional functionality using the built-in module, varying from new
types, through an IDL, to memory management issues.

3.2.1 Additional Types

The Scheme module, like the C part, revolves mainly around types.
First, there are several simple types that are implemented in the
Scheme module, summarized in Table 3. Adding these types is sim-
ple, as described in Section 3.1.1, for example, the file type is in-
tended to make it easy to interact with foreign functions that expect
a file name — making it possible to use names like “˜foo/bar”.
The definition in ‘foreign’ involves using expandpath when go-
ing from Scheme to C, and leaving the path as is when going from
C to Scheme:

(define _file
(make-ctype ; create a new type,
_path ; based on _path
expand-path ; expand-path when sent out
#f)) ; receive: same as _path

Since this part of the implementation is in Scheme, we can now
develop better solutions than we could if we used only C. For ex-
ample, note that enum and bitmask are not type objects, but func-
tions that create type objects — they are type constructors. Also,
note that there are multiple string types, since our system is in-
tegrated into the development version of PLT Scheme which uses
Unicode for its strings — the string type is therefore an ‘identi-
fier syntax’ that expands into a usage of the ‘default stringtype’
parameter. Both of these would take a much heavier implementa-
tion if they were implemented in C.

3.2.2 Pointer Types

Section 3.1.2 mentions that Scheme pointer objects have an arbi-
trary ‘tag’ value associated with them, and that these tags are ig-
nored by the C part of the interface. The ‘foreign’ module pro-
vides a cpointer function that, when given some Scheme value,
constructs a new pointer-based type which tags pointer objects
when they arrive from the foreign side, and raises an error when
passing a pointer with the wrong (non-eq?) tag from Scheme. This
functionality might be extended in the future to use the tag value in
some more meaningful way, for example, make it be another type
object and make pointer dereferencing use it instead of taking a
type argument, or use it to imitate inheritance where a pointer can
be used in places where an ancestor pointer kind is expected. In ad-
dition to the cpointer function, there is a definecpointertype
syntax:

(define-cpointer-type 〈 id〉
[〈type-or-#f〉 〈scm→c〉 〈c→scm〉])

which defines such a type using "〈id〉" as a tag, together with a
‘〈id〉?’ predicate and a ‘〈id〉-tag’ binding for the tag value.

The optional type and translation arguments can be used to spec-
ify the base type in case it is not pointer (for example, if it is a
struct type), and translation procedures. Such arguments are also
available for cpointer.

3.2.3 Vector Types

Exposing C functionality in Scheme makes it possible to use ar-
bitrary blocks of memory to hold data. Allocating such a block is
even simpler with the provided list->cblock and cblock->list,
both implemented in Scheme, but the result is just a bare pointer ob-
ject. It is therefore useful to encapsulate such a memory block with
the type of objects it uses and the number of objects contained in
it. Using this we benefit from no per-item storage overhead as well
as making some foreign interfaces easier to deal with, and at the
same time ensure that there are no violation of the vector bounds.
Interacting with these vectors is intentionally similar to using plain
Scheme vectors:

> (define v (make-cvector _int 10))
> (cvector-length v)
10
> (cvector-set! v 5 55)
> (cvector-set! v 15 55)
cvector-ref: bad index 15 for cvector bounds of 0..9
> (cvector-ref v 5)
55

These vectors can be used as inputs to foreign functions via the
cvector type.

SRFI 4 [6] defines similar structures, except that there are different
Scheme types (therefore different function names) for each kind
of vector, making it limited to numeric vectors. Our ‘foreign’
interface adds a complete re-implementation of SRFI 4, which will
replace the C-based module that is currently a part of PLT Scheme6.

3.2.4 Struct Types

The C part of our implementation provides limited support for
defining struct types: we get a ‘makecstructtype’ function which
constructs a new kind of primitive type given a list of existing types.
This new type can be used with Scheme pointer objects, which
will cause copying the structure contents rather than the pointer
value when marshaling data. Accessing these objects is left for
the Scheme side, which uses the information given by the ctype-
sizeof and the ctypealignof functions to compute the offsets
into the contained values.

This functionality is sufficient for the ‘foreign’ module to make C
structs accessible from Scheme. Two interfaces are provided:

1. list-struct is a type constructor: given a list of type ob-
jects, it constructs a matching C struct type, and wraps the
result in a yet another type that translates values contained in
such a C struct value to and from a Scheme list of values. Us-
ing this type is simple, but it involves extra allocations which
is an extra overhead some users will want to avoid.

2. definecstruct is a new syntax, similar to PLT Scheme’s
‘definestruct’, except that slots have an associated type.

6The current implementation does not deal with the external
syntax specified in SRFI 4.

Values of this new type are kept as a pointer object that refer-
ences the memory block holding the binary data. Again, this
simplifies interfaces: there is no overhead involved as we are
dealing with the raw data. A simple example of using such a
struct type follows:

> (define-cstruct _foo
((x _int) (y _double)))

> (define x (make-foo 1 2.3))
> (foo? x)
#t
> (list (foo-x x) (foo-y x))
(1 2.3)
> (set-foo-y! x 4.5)

3.2.5 Simple Function Types

Finally, the core functionality that allows interactions with foreign
libraries is enabled by the cprocedure type constructor. This con-
structor creates a function type when given a list of input types and
an output type. Like all other C type objects, the resulting function
type has two translation procedures: one going from C to Scheme
and one going back. For these function types, the first translator
generates a callout object that can be used as a new Scheme prim-
itive, and the second generates a callback object that can be sent
to C code allowing it to invoke a Scheme procedure. This inter-
nal function is implemented via the primitive ‘fficall’ and ‘ffi-
callback’ functions (see Table 2), it’s definition is (roughly7):

(define (_cprocedure itypes otype)
(make-ctype _pointer
(lambda (x) (ffi-callback x itypes otype))
(lambda (x) (ffi-call x itypes otype))))

This means that from the user’s point of view, a simple type spec-
ification like ‘(cprocedure (list int int) int)’ can be
used as either an input or an output type, and it can properly nest
(negative function type occurrences generate callbacks and positive
occurrences generate callouts). For example, the following con-
trived higher-order C function:

int foo_ho_ho_func(int x, int(*(*f)(int))(int)) {
return (f(x+1))(x-1);

}

can be used (interactively!) in Scheme in a straightforward way:

> ((get-ffi-obj "foo_ho_ho_func" "foo.so"
(_cprocedure
(list _int

(_cprocedure
(list _int)
(_cprocedure (list _int) _int)))

_int))
3
(lambda (x) (lambda (y) (+ y (* x x)))))

18

3.2.6 Complex Function Types: IDL Features

The cprocedure can generate simple interfaces, but it is insuffi-
cient in cases where the foreign function needs an additional layer
of interface when arguments and/or the return value on the Scheme
side don’t match those of the foreign side. A common example of

7The actual implementation accepts another optional argument
that can be used to tweak the resulting primitive procedure. This is
described in the following section.

this is a foreign function that expects a pointer and a size indica-
tor, which correspond to a single Scheme object that encapsulates
both. For example, the standard C ‘read’ function expects a string
buffer and its size in two input arguments. A simple cprocedure-
generated interface inevitably exposes the additional argument, so
the interface programmer needs to wrap it by additional glue code.
For this, cprocedure has an extra optional argument that is ex-
pected to be a procedure that wraps the resulting foreign function8:

(define c-read
(get-ffi-obj "read" "libc.so.6"
(_cprocedure (list _int _string _int) _int

(lambda (prim)
(lambda (fd buf)
(prim fd buf (string-length buf)))))))

Another common example is the use of ‘output pointers’ by foreign
code to return multiple values. Again, a naive cprocedure inter-
face will be awkward to use from Scheme code, and the interface
programmer needs to use a wrapper that makes the foreign function
more Scheme-friendly:

(define c-modf
(get-ffi-obj "modf" "libc.so.6"
(_cprocedure (list _double _pointer) _double

(lambda (prim)
(lambda (d)
(let* ([p (malloc _double)]

[r (prim d p)])
(values (ptr-ref p _double) r)))))))

More forms of wrappers are needed in other situations: additional
argument dependencies, input- and output-pointers, different allo-
cation strategies, implicit ‘self’ pointers, etc. In general, we need
a way to combine arbitrary wrappers that operate on arbitrary ar-
guments. Such wrappers cannot be implemented as new C types,
since such types can add layers of processing on each value inde-
pendently, rather than the required interaction among multiple ar-
guments and output values. What we need here is some form of
an interface description language (IDL). The requirements for an
appropriate IDL are:

• it should be easy to write and easy to read,
• it should be rich enough to express interactions such as the

two demonstrated above as well as others,
• it should not lead to an expensive performance hit,
• it should be easy to extend when facing new situations.

One way that we have tried to tackle this issue is by providing the
necessary abstractions as a collection of procedures, each perform-
ing a single task, and have interfaces use combinators to build the
required argument interactions. This approach has a major draw-
back: it leads to complex expressions which are hard to write and
harder to read. Using this approach, code that converts a Scheme
string argument to buffer-size and pointer arguments might use a
‘string+len’ function together with combinators that arrange to
swap the arguments, for example:

(define foo
(get-ffi-obj "foo" "foo.so"
(_cprocedure (list _int _string) _int

(compose prim:1+2->2+1
(prim:1->1+2 string+len)))))

8Actually, our interface is part of the new version of PLT
Scheme, which has a new byte-string type for raw (non-Unicode)
character sequences. We use strings in the following examples for
simplicity.

It is obvious that this code is hard to read — for example, inspect-
ing the types reveals that there is a bug in this code9. In addition,
such procedures will often be higher order for customization, mak-
ing things even worse. Another drawback of this approach is the
number of procedure applications that are involved in each call:
any time overhead involved in foreign calls might be critical, and
we don’t want programmers to move to inferior tools because of it.

The approach that our system takes uses Scheme’s syntax abstrac-
tion capabilities instead. We define a new type combinator, fun,
which is actually a syntax transformer. Usages of fun generate the
appropriate wrapper code, and use cprocedure with it to create
the function type.

Simple usages of fun are similar to cprocedure except that the
types need not be put in a list, and an infix ‘->’ marker separates
the input types from the output type. For example, using fun for
the higher-order C example from Section 3.2.5:

> ((get-ffi-obj "foo_ho_ho_func" "foo.so"
(_fun _int (_fun _int -> (_fun _int -> _int))

-> _int))
3
(lambda (x) (lambda (y) (+ y (* x x)))))

18

In its simple form, the fun type constructor has this syntax:
(fun 〈f-type〉∗ -> 〈f-type〉)

which covers simple function interfaces in a slightly more conve-
nient form than cpointer. In its full form, fun is extended to deal
with common argument interactions like most IDLs and more —
rather than fighting with a limited preprocessor or re-implementing
a C parser, we have a real (meta) language to help us. Using syn-
tactic abstractions in Scheme, we achieve a powerful IDL through
fun, one that can be extended to handle all possible situations.

The full form of the fun syntax has two optional parts, and each
〈f-type〉 subform can have an optional identifier and/or expression:

(fun [〈args〉 ::] 〈f-type〉∗ -> 〈f-type〉 [-> 〈expr〉])
〈f-type〉 ::= 〈t-expr〉 | ([〈id〉 :] 〈t-expr〉 [= 〈expr〉])
〈t-expr〉 ::= expressions that evaluate to a type value

The sequence of 〈f-type〉s in their full form behave like a sequence
of ‘let*’-bindings, each with an associated type and a value (both
plain Scheme expressions). As with ‘let*’, value expression can
refer to previous identifiers for their values. Omitting an identifier
makes the corresponding value inaccessible for subsequent expres-
sions; omitting a value expression means that the resulting wrapper
function will expect a corresponding argument. For example, in this
definition:

(define c-read
(get-ffi-obj "read" "libc.so.6"
(_fun _int

(buf : _string)
(_int = (string-length buf))
-> _int)))

there are three arguments that are passed on to the foreign function:

• The first uses the short form: it has no value so it will receive
the first value passed on to ‘c-read’, and it has no name so
its value can not be used in following expressions.

• The second argument has no value too, making it get the sec-

9A type checker will help avoiding such errors, but will not
make things easier to read and write.

ond ‘c-read’ argument, and its value is bound to ‘buf’.
• The third argument has a value expression so the value that is

passed on to the foreign function is always the length of the
second (string) argument.

‘c-read’ is therefore a Scheme procedure that expects two argu-
ments and returns an integer, by arranging for properly calling the
foreign ‘read’.

In some rare cases, an interface needs to have better control of the
wrapper’s argument list — which is the purpose of the optional
‘〈args〉 ::’ prefix: it specifies the arguments to the resulting wrap-
per function. For example, if ‘read’ were to expect the buffer size
first, we would use this fun type:

(_fun (fd buf) ::
(fd : _int)
(_int = (string-length buf))
(buf : _string)
-> _int)

Note that identifiers are important here, as they connect the foreign
inputs with the wrapper’s inputs. The 〈args〉 part can also be used
to specify normal Scheme argument lists, including optional argu-
ments.

A second ‘->’ marker denotes a result expression different than the
one that the foreign function returned. This expression can use any
bound values and arguments, as well as the foreign result value (if
given an identifier). For example, the ‘modf’ interface given above
is better written with fun as:

(define c-modf
(get-ffi-obj "modf" "libc.so.6"
(_fun _double (p : _pointer = (malloc _double))

-> (r : _double)
-> (values (ptr-ref p _double) r))))

The fact that we can insert any Scheme expression for the return
value makes it easy to change such definitions so they use alterna-
tive ways for assembling the return values, for example, changing
‘values’ to ‘cons’ in the above. If this was implemented in C, such
changes would require more work.

The similarity between the fun syntax and ‘let*’ is not incidental:
fun assembles a wrapper function that contains a single ‘let*’

expression, which evaluates the various expressions, binding the
results to specified identifiers. For example, the usage of fun in
the last example expands to:

(_cprocedure (list _double _pointer) _double
(lambda (ffi)
(lambda (tmp15)

(let* ((p (malloc _double))
(r (ffi tmp15 p)))

(values (ptr-ref p _double) r)))))

This satisfies the efficiency requirement: only one extra function
call is wrapped around the foreign call.

3.2.7 Additional IDL Features: Custom Function Types

The fun facility handles some common cases where we need to
bridge a gap between the foreign function and Scheme code that
uses it, but there are additional cases that are not addressed. For
example, the ‘modf’ interface code above represents such a com-
mon situation – output pointers that are used by foreign code to
return multiple values. We therefore extend the fun syntax fur-
ther, by making it interact with special ‘custom function types’ that

Custom Type Usage
ptr input, output, or input/output pointers

box

similar to an input/output ptr, but modifies the
Scheme box contents
(PLT Scheme has a mutable box type. Note that we don’t
need to associate Scheme boxes with ‘shadow’ pointers:
either copy values, or use a pointer instead of a box)

list, vector marshal lists and vectors as C pointers
bytes uses Scheme byte-strings (raw, non-Unicode strings)

? a special non-type intended for saving intermediate
interface results

Table 4. Simple types defined by the Scheme module

are themselves syntaxes — such types can install pieces of code
that are used before and after the foreign call, possibly modifying
the corresponding value. In the case of output pointers we want to
allocate some memory before the foreign call and dereference it af-
terward, a task that is achieved by the ptr custom type. ptr is a
syntax with usages that has the following form:

(ptr 〈mode〉 〈type-expr〉)
〈mode〉 ::= i | o | io

The 〈mode〉 specifies an input, output, or input/output pointer. In
the ‘modf’ case, we use an output pointer:

(define c-modf
(get-ffi-obj "modf" "libc.so.6"
(_fun _double (p : (_ptr o _double))

-> (r : _double) -> (values p r))))

The code that is generated by this fun syntax is similar to the pre-
vious code,

(lambda (tmp15)
(let* ((p (malloc _double))

(r (ffi tmp15 p))
(p (ptr-ref p _double)))

(values p r)))

but notice that we don’t need to explicitly allocate a double or deref-
erence the pointer.

The custom function types that are provided by the ‘foreign’ are
listed in Table 4. Further details on these types can be found in our
user manual.

As mentioned above, Custom types are implemented as syntaxes.
fun tries to expand each type expression it encounters, and if an

expansion is identified as a custom type, then it has certain forms
that contain the relevant pieces of code. A custom type expansion is
a ‘(〈key:〉 〈val〉 ...)’ sequence where all of the 〈key:〉s are from a
short list of known keys. Each key interacts with generated wrapper
functions in a different way, which affects how its corresponding
argument is treated:

type: specifies the foreign type to be used (#f can be used to
make this not participate in the foreign call).

expr: specifies an expression to be used for arguments of this
type, removing it from wrapper arguments.

bind: specifies a name that is bound to the original argument if it
is required later (e.g., box needs to refer to the original box).

1st-arg: specifies a name that can be used to refer to the first ar-
gument of the foreign call (good for common cases where the
first argument has a special meaning, e.g., for method calls).

prev-arg: similar to 1st-arg:, but refers to the previous argu-
ment.

pre: a pre-foreign code chunk that is used to change the argu-
ment’s value.

post: a similar post-foreign code chunk.

The following is the implementation of the ptr custom type from
the ‘foreign’ module. It is provided to roughly demonstrate how
this is done; again, complete details are given in the user manual.

(define-syntax _ptr
(syntax-rules (i o io)
[(_ i t)
;; input: malloc a pointer, set its value from the argument
(type: _pointer
pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p)))]

[(_ o t)
;; output: malloc a pointer on entry, dereference on exit
(type: _pointer
pre: (malloc t)
post: (x => (ptr-ref x t)))]

[(_ io t)
;; input/output: like output, but set its contents on entry
(type: _pointer
pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p))
post: (x => (ptr-ref x t)))]))

All of the special custom types provided by ‘foreign’ are defined
this way.

To conclude: our fun satisfies all requirements mentioned above
for a good IDL: it is easy to read and write, it can express all wrap-
per interactions that other IDLs can express and more, it is effi-
cient, and extensible by the ability to add new custom types that
handle new kinds of processing. As expected from a syntax trans-
former that performs some substantial work, it carries some con-
ceptual overhead, but we believe that overall it is better than the C
processing alternatives since Scheme is superior in its syntactical
abstraction capabilities.

4 Usage Examples

With the implementation of our system, we provide a few (mostly
Linux) library interfaces. This was used to test the implementation,
motivating the overall design. We now describe a few examples of
using our system, all based on these interface implementations.

Syntactic Abstractions
C provides some (limited) degree of syntactic abstraction, whereas
Scheme truly shines in this area. When a complete library interface
is desired (rather than pulling out a few useful functions), repetition
is common. Writing interfaces in Scheme makes such problems al-
most non-existent — for example, our ImageMagick interface uses
a simple macro:

(define-syntax defmagick
(syntax-rules (:)
[(_ id : x ...)
(define id
(get-ffi-obj ’id libwand (_fun x ...)))]))

to make interface definitions easier.

Defining new syntaxes can help in other, less common situations.
For example, KSM [4] has a clang:sym form that exposes a foreign
library variable as a Scheme binding. Using PLT Scheme macros,
we can achieve this functionality in Scheme using a macro that de-
fines the C ‘variable’ as a macro10:

10From the MzScheme [9, Section 12.1] manual: The ‘syntax-
idrules’ form has the same syntax as ‘syntaxrules’, except that
each pattern is used in its entirety (instead of starting with a key-

(define-syntax defcvar
(syntax-rules ()
[(_ var lib type)
(define-syntax var
(syntax-id-rules (set!)
[(set! var1 val1)
(set-ffi-obj! ’var lib type val1)]

[(var . xs)
((get-ffi-obj ’var lib type) . xs)]

[var (get-ffi-obj ’var lib type)]))]))

and verify that it is working properly:

> (defcvar z "x.so" _int)
> z
0
> (set! z 123)
> z
123
> ((get-ffi-obj "getz" "x.so" (_fun -> _int)))
123

where the C code that is compiled into “x.so” is:

int z = 0;
int getz() { return z; }

Using Types
C types in our system are somewhat lighter than expected: there
is only a loose correlation between these types and Scheme object
types. A type in our context can simply mean a different way of
marshaling Scheme values to/from C, for example, the file type
from Section 3.2.1 is simply a different way to marshal MzScheme
path objects which are normally used with path. No C-level sup-
port is needed for such cases: there are no new binary tags in-
volved, and no new object representations at the implementation
level, meaning that it is extremely cheap to create such type descrip-
tors. A common usage of types is therefore as a simple mechanism
to add hook on the translation process.

For example, the ImageMagick library specifies a ‘MagickWand’
type, which is always being manipulated as a ‘MagickWand*’
pointer. There are functions that return a pointer to a newly cre-
ated ‘MagickWand’ object, and these objects must be destroyed
with the ‘DestroyMagickWand’ function. To do this automati-
cally, we define a MagickWand type using pointer and provid-
ing a new translation when going from C to Scheme, one that uses
‘registerfinalizer’ to make the GC use ‘DestroyMagickWand’
when reclaiming the pointer object11:

(define _MagickWand
(make-ctype _pointer
#f ; Scheme->C translation is the same as _cpointer
(lambda (ptr)

(if ptr
(begin (register-finalizer ptr destructor) ptr)
(error ’_MagickWand "got a NULL pointer")))))

We can make this even better with a new cpointer type which uses
an appropriate tag to identify these pointers and make sure that we
don’t confuse pointers to internal ImageMagick objects of different
types. The following definition uses ‘definecpointertype’ (see
Section 3.2.2) to create a type that tags all pointers when they are

word placeholder that is ignored).
11This assumes that there is no way to get a second pointer object

that refers to the same ‘MagickWand’ object, so care should be taken
with functions that can create such aliases.

moved from the foreign side to Scheme, and check the tag when
sending a Scheme pointer object out to foreign code.

(define-cpointer-type _MagickWand #f #f12

(lambda (ptr)
(if ptr

(begin (register-finalizer ptr destructor) ptr)
(error ’_MagickWand "got a NULL pointer"))))

A different example of using a new type comes from our TCL in-
terface: the Tcl Eval function returns a status integer, indicating a
possible error. In our implementation, we define evaltcl as:

(define eval-tcl
(get-ffi-obj "Tcl_Eval" libtcl
(_fun (interp : _interp = (current-interp))

(expr : _string)
-> _tclret)))

using the following tclret definition:

(define _tclret
(make-ctype (_enum ’(ok error return ...))
(lambda (x) (error "tclret: only for returning"))
(lambda (x)

(when (eq? x ’error)
(error ’tcl (get-string-result

(current-interp))))
x)))

which effectively translates a TCL error into a Scheme exception.

Note that the TCL interface uses a Scheme parameter ‘current-
interp’ as the value of the first argument to ‘TCL Eval’. We can
make this implicit by defining a new custom type syntax, using the
‘expr:’ keyword:

(define-syntax _cur-interp
(syntax-id-rules ()
[_ (type: _interp expr: (current-interp))]))

(define eval-tcl
(get-ffi-obj "Tcl_Eval" libtcl
(_fun _cur-interp (expr : _string) -> _tclret)))

Using Custom Types
Custom types are intended to be used in situations where simple
independent processing of each argument is insufficient. For exam-
ple, many functions in the ImageMagick interface return a ‘status’
integer that indicates if there was an error. If an error has occurred,
the main object involved in the function invocation should be used
to retrieve the error message and severity. One way to deal with
this situation is to save the object in a place accessible right af-
ter the foreign call, like a parameter. This is essentially what the
TCL interface does, where tclret uses a parameter to get the er-
ror message. The ImageMagick interface is different — instead of
a single implicit context parameter, it fits more an object-oriented
style, where each method call happens in its object’s context.

As a result, a good interface must be able to provide a relation be-
tween different arguments, namely the result value (to be checked
for an error) and the first argument (providing the current object
context). This is done using the 1st-arg: keyword of a custom
type which specifies an identifier that will be bound to the first ar-
gument:

12Use cpointer as a base type, no extra translation when going
to from Scheme to C, and register the destructor on the way back.

(define-syntax _status
(syntax-id-rules (_status)
[_status
(type: _bool
1st-arg: 1st
post: (r => (unless r

(raise-wand-exception 1st))))]))

Memory Management
Usually, there are important aspects of the library interface that are
not fully specified. Memory management issues often fall under
this category. For example, a naive interface might behave in a
surprising way:

> (define crypt
(get-ffi-obj "crypt" "libcrypt"

(_fun _string _string -> _string)))
> (define a (crypt "foo1" "23"))
> a
"23.kLNfMwUW0Q"
> (define b (crypt "foo4" "56"))
> b
"568.5HohJYC0g"
> a ; a is modified!
"568.5HohJYC0g"
> (string-set! a 0 #\X) ; verify that a and b
> (list a b) ; are the same string
("X68.5HohJYC0g" "X68.5HohJYC0g")
> (eq? a b) ; ...but not quite the same
#f

Using a simple SWIG interface, made using the C prototype decla-
ration for ‘crypt’:

extern char *crypt(const char *key, const char *salt);

suffers from this problem too. The reason for this strange behav-
ior is that both our interface implementation and SWIG’s generated
code use MzScheme’s ‘make string without copying’ function,
which simply wraps an existing C string in a Scheme string object.
The standard Unix crypt function returns a pointer to its own static
string, making the above interaction create two Scheme string ob-
jects that point to this static buffer — but the Scheme objects are
still different. This can be dangerous as it breaks an implementation
assumption, so some solution is required. Changing the implemen-
tation to use ‘scheme make string’ would not be acceptable in the
general case since it leads to an expensive overhead. In addition,
there are other foreign functions (e.g., getcwd) that can allocate a
return string, and blindly copying it will cause a memory leak (the
allocated string is not in GC-controlled memory).

Using our system simplifies such a solution since we don’t have to
break out of Scheme, we can simply use a new type13:

(define _string/copy
(make-ctype _string #f
(lambda (x) (string-append x #""))))

We can solve numerous problems in a similar way, for example,
using semaphores to avoid problems with the single crypt buffer, or
creating a new string/free that copies a string and freeing the
previous GC-invisible one.

13Note that this is not relevant now, since our system is part of
the Unicode-enabled MzScheme, so Scheme strings are stored in
Unicode format, meaning that they are always copied.

5 Related Work

The first and foremost advantage that our foreign interface has
over existing implementations, is the fact that it is truly dynamic.
This means that functionality that traditionally is available only via
C code is available to Scheme programmers, which makes for a
compiler- and architecture-independent system. Furthermore, the
dynamic aspect of the system allows for playing with foreign exten-
sions dynamically, modifying and debugging the interface at run-
time14. Exploratory programming is therefore possible, hence the
overall development cycle becomes much lighter.

A second advantage comes from the fact that we use Scheme. Using
a language with robust syntactical abstractions makes it possible
to provide an IDL-like interface for interface programmers, with
features that can go beyond capabilities of conventional IDLs [18,
16]. Having syntactic abstractions in the language makes it possible
for users to extend their own code using new constructs, including
ones that are unique to a single library, in contrast to fixed IDLs
that are either fixed, or used through a primitive facility like the C
preprocessor.

Dynamic interfaces are not as common as static interfaces. Exist-
ing dynamic systems, for example the Allegro CL foreign function
interface [10] and Python’s ctype module, do not provide the low-
level C-substitute features that we do. Urban’s FFI survey [17],
although a little out-dated, provides an excellent overview on ex-
isting systems and implementation issues. It is interesting to note
an SML interface system [2] as another, somewhat similar system
to ours. Similar to our design, the main idea is data-level inter-
operability [8] — making raw C data available to the high-level
language, but our system differs in a few important aspects:

• Our design is built around the idea of enabling arbitrary C-
like unsafe code — whereas Blume’s system uses SML’s type
system to enhance interaction with foreign code.

• Our system goes one step further in giving users more power.
“If you can do it in C, then we will let you do it in Scheme”
rather than “Some C-level operations are useful enough that
we let you use them”.

• Blume’s system is limited to SML’s syntactic framework,
where we use Scheme’s capabilities for creating IDL-like syn-
tax.

We focus our comparison on static interface generators such as
GreenCard [14], G-Wrap [3], and SWIG [1]. There are Scheme
systems that fall under this category too by providing support for
combining Scheme and C code, for example, Gambit-C15 [5] and
KSM [4]. Most notably, SRFI 50 [15] attempts to standardize this
approach, possibly making it possible for different Scheme imple-
mentations to share C code. These systems make it possible to write
Scheme code that is converted to C code, so it is easy to write such
‘Scheme’ code that calls C functions as if they were plain function
calls. Some of these systems lack a code generation component that
is derived by an IDL or some equivalent, but they can all be seen as
static code generators.

We now focus on SWIG as a popular system that can be used for
multiple high-level languages. A simple translation using SWIG
requires the user to compile (through the SWIG parser) a C header
file with a SWIG interface file, resulting in C code that is then, yet
again, compiled using a C compiler, to produce a C module that
is finally imported into Scheme. In contrast to the static approach,

14As long as no fatal errors occur.
15Some parts of this were ported to PLT’s MzC compiler.

func. Glue Type CPU Real GC
crypt SWIG 38% 4% -34%

Handwritten C glue 53% 49% 0%
sqadd SWIG 55% 57% 0%

Handwritten C glue 60% 61% 0%

Table 5. Comparison of overhead time

our ‘foreign’ library makes it possible for a Scheme developer to
quickly open up a C library, pull out a few procedure objects and
start an interactive development session.

It could be argued that a simpler, more user friendly system comes
at a price of expensive overhead, leading to an inherent sacrifice of
performance. Testing out two simple benchmarks, we found that
the interface overhead of our system is just slightly slower as a
compiled interface that was generated by SWIG, which itself has
an almost identical overhead to hand-written glue code.

Our results are summarized in Table 5. Two functions were used for
this analysis — the first is the crypt function taken from the stan-
dard Unix libcrypt: consuming two strings and producing an en-
crypted string result. The second is a simple C function, sqadd, that
performs an addition of two integer squares. We measured a mil-
lion executions of crypt and 30 million executions of sqadd, per-
forming each test for 16 rounds beginning with a fresh MzScheme
process, discarding the 6 extreme timings and averaging the other
10. The percentages are computed as: TimePLT−TimeRawC

TimeSWIG−TimeRawC
− 1 where

TimePLT is the averaged running time of our interface, TimeSWIG is
the average running time of SWIG, and TimeRawC is that of an im-
plementation of comparable repetition loops in C. The same com-
putation was used to compare our system against handwritten C
glue code.

As Table 5 shows, our system is about 1.5 times slower then SWIG,
and, in most cases the handwritten glue code. The biggest per-
formance hit is in the simple arithmetic function, where the actual
foreign code does much less than the interface code. Situations like
this should rarely occur since the usual case of using a foreign li-
brary is when it can do some substantial work that is otherwise hard
to achieve in Scheme.

While issues of timing and performance are important, aspects such
as implementation complexity and ease of use must also be consid-
ered. Comparing our system to SWIG and interfaces that use an
IDL, it becomes clear that our implementation is better in at least
one aspect. One advantage that our system provides over the static
approaches is the ability to specify additional functionality using
new user-defined types that involve arbitrary translation code. The
main point here is that such translations are written in the high-level
language itself rather than dealing with the intricacies of the C im-
plementation.

In addition, regardless of interface design and syntactical complex-
ity, our implementation is better because the interfacing mechanism
itself is in a high order language: making it possible to include ar-
bitrary Scheme code as part of the foreign call specification. This is
further enhanced by the fact that we use Scheme since it is possible
to create new syntactic abstractions to deal with new requirements.
Either with SWIG interface files or with an IDL, the interface de-
veloper is still confined by C and C-like code with its known short-
comings when it comes to dealing with complex problems.

6 Future Work
C++ Libraries Currently, there is support only for plain C li-
braries. Depending on implementation details, it can be feasible to
interface C++ libraries. This might involve plenty of details regard-
ing object layout, inheritance, virtual function tables, name man-
gling, etc. Hopefully, these issues can be addressed in Scheme so
we might not need any further enhancements to the C part of our
implementation.

Parsing C One of the main disadvantage of our system is that it
is not using C, so we cannot use C include files as rough interface
specifications. We plan to investigate a simple C header-file parser
that will parse files into s-expressions, which can be used to auto-
mate some aspects of interface generation (A working parser pro-
totype exists). Such a parser does not need to be fast and efficient,
since parsing can be done at syntax expansion time, eliminating any
run-time speed costs. In addition, note that as usual with other in-
terface generators, this will almost never mean that an interface can
be fully automated, as header files do not provide enough informa-
tion — this situation might improve if we target some IDL language
instead (most use similar syntax).

Memory Management Issues Currently, our system works well
with both versions of PLT Scheme: the one that uses the Bohm
conservative garbage collector and the one that uses a precise mov-
ing collector. However, there are still issues that interface writers
need to be aware of. In time, we will gain more experience writing
interfaces, which will motivate further functionality that will make
this easier — our goal is, of course, making GC-related issues as
transparent as possible for interface writers.

One aspect of this, is dealing with struct objects that might con-
tain GC-able pointers. We have a plan to deal with this, effectively
making it possible to specify in Scheme a map of pointer offsets
that the garbage collector should be aware of, making it treat new
Scheme-defined structs properly.

Additional Scheme Support There are some areas in which ad-
ditional Scheme support is needed. For example, an array of structs
is hard to deal with — there is no way to get to one such struct and
modify it, since accessing it will create a copy. We believe that it
is possible to write Scheme code that will make this possible, by
not pulling out a struct copy, but rather provide forms that will use
nested reference indexes, where some are vector indexes and some
are struct field names. If we can make this composable, it would be
possible to deal with them in an easy way — without resorting to
pointer aliasing16.

An additional area where additional support is needed, is when
dealing with foreign functions that block. MzScheme contains a
few hooks that are intended to be used when it is embedded as a
library, these hooks can be used for calling blocking foreign func-
tions as well.

Using Contracts PLT Scheme has support for procedure con-
tracts [7] which could be used to enhance the robustness of library
interfaces. Specifically, we want to treat contract violations in mod-
ules that use the ‘foreign’ module as more severe, as these are
equivalents of C bugs, which might result in a crash. A module
would also need some way of declaring it as a proper interface,
meaning that code that uses it should not be blamed for crashes.
Alternatively, code that is not intended as an interface (i.e., code
that provides functionality for interface modules) should propagate
the property of contract violation severity.

16The precise garbage collector makes it impossible to get a
pointer to the internal part of an allocated block

Assembly Code Generation Working our way to native just-in-
time compilation, we plan on adding machine-code generation abil-
ity to PLT Scheme. We will interface this functionality via the
‘foreign’ module. Furthermore, some of the interface aspects can
be implemented in assembly when runtime is important.

7 References

[1] D. M. Beazley. SWIG: An easy to use tool for integrating scripting
languages with C and C++. In Proceedings of the 4th USENIX
Tcl/Tk Workshop, pages 129–139, July 1996.

[2] Matthias Blume. No-longer-foreign: Teaching an ML compiler to
speak C “natively”. In BABEL’01: First workshop on
multi-language infrastructure and interoperability, September 2001.

[3] Rob Browning. G-Wrap home page.
http://www.nongnu.org/g-wrap/.

[4] Hangil Chang. KSM-Scheme home page.
http://square.umin.ac.jp/ hchang/ksm/.

[5] Marc Feeley. Gambit Scheme system.
http://www.iro.umontreal.ca/ gambit/.

[6] Marc Feeley. SRFI 4: Homogeneous numeric vector datatypes.
http://srfi.schemers.org/srfi-4/.

[7] Robert Bruce Findler and Matthias Felleisen. Contracts for
higher-order functions. In ACM SIGPLAN International Conference
on Functional Programming, 2002.

[8] Kathleen Fisher, Riccardo Pucella, and John Reppy. Data-level
interoperability. Bell Labs Technical Memorandum, April 2000.

[9] Matthew Flatt. PLT MzScheme: Language Manual. PLT, August
2004. Version 208.

[10] Franz Lisp. Foreign function interface. http://www.franz.com/-
support/documentation/6.1/doc/foreign-functions.htm.

[11] Anthony Green. The libffi home page.
http://sources.redhat.com/libffi/.

[12] Samuel P. Harbison. Modula-3. Prentice-Hall, 1992.
[13] Thomas Heller. The ctypes module.

http://python.net/crew/theller/ctypes/.
[14] Simon Peyton Jones, Thomas Nordin, and Alastair Reid. GreenCard:

a foreign-language interface for Haskell. In J. Launchbury, editor,
2nd Haskell Workshop, 1997.

[15] RIchard Kelsey and Michael Sperber. SRFI 50: Mixing scheme and
c. http://srfi.schemers.org/srfi-50/.

[16] The Open Group. CAE Specification, DCE 1.1: Remote Procedure
Call, chapter 4. The Open Group, October 1997.

[17] Reini Urban. Design issues for foreign function interfaces.
http://xarch.tu-graz.ac.at/autocad/lisp/ffis.html,
Last updated at 2004.

[18] A. Vogel, B. Gray, and K. Duddy. Understanding any IDL — lesson
one: DCE and CORBA. In Proceedings of the Third International
Workshop on Services in Distributed and Networked Environments
(SDNE’96), 1996.

Acknowledgments

We would like to thank Matthew Flatt: this work would not be pos-
sible without his help, especially with GC-related issues. The com-
ments and suggestions made by the reviewers have been extremely
helpful, Mike Sperber was particularly helpful in the process of re-
vising this text.

