
Quotation and Reetion in Nuprl and ShemeEli Barzilay(eli�s.ornell.edu)

Contents1 Goals & Outline 12 Introdution 13 Reetion in Programming Languages 44 (Pure) Sheme 64.1 Syntax . 64.2 Semantis (Values) . 74.3 Evaluation . 84.4 Quotations (Representations) 94.5 Reetion . 105 Nuprl 115.1 Syntax . 115.2 Semantis (Values) . 125.3 Evaluation . 125.4 Quotations (Representations) 135.5 Reetion . 156 Quotations 156.1 Quotation by Preproessing 166.2 A Quasi-Quotation Preproessor 186.3 Quotations and Quasi-quotation in Sheme 196.4 Suggested Quotations in Nuprl 217 Conlusions 22Bibliography 24

1 Goals & OutlineRelationships between the onepts of proof systems and programming lan-guages are known. Some are well demonstrated in systems like Coq andNuprl, but other aspets have not been fully implemented, suh as reetion.I believe that the true ontext in whih suh ideas are beoming useful iswhen they are implemented, this \implementation as understanding" prini-ple is the reason some parts of the following text ontain ode piees. Thisshould take the form of a logial environment with reetion mehanisms,Nuprl is a good hoie sine it is used for onneting logi and programminglanguages. Therefore, the �rst step towards reating suh an implementationshould be taken: pinpointing what should be done, and how. This paper isan attempt to do this.An implementation of suh a reetive system merges two quite dif-ferent environments, eah with its own syntax, semantis, evaluation andquotations. The disussion, therefore, starts with these attributes in generallanguages in Setion 2; programming languages are inspeted generally inSetion 3 and using a pure version of Sheme as a point of view due to thesimpliity of its reetion mehanisms in Setion 4; Nuprl is then disussedas our goal logial environment in Setion 5; possible ways of implementinga quotation mehanism are disussed in Setion 6. Finally, onlusions arepresented in Setion 7, this is the most important part.2 IntrodutionThe term \language" as we use it, is a formal way of ommuniating onepts(objets in some domain). The language itself an ome in several di�erentways suh as voal sounds, written text, or text enoded in omputer �les.Whatever form a language takes, there are rules to speify what onstrutsare valid | syntax, and how to assoiate syntati onstruts with the on-epts they represent | semantis (or meaning). For example the syntationstrut of the Hebrew sound \shalosh", of the English letter sequene t-h-r-e-e, of the ASCII harater \3" in some onventional programming language,and of the Nuprl term `natnumf3:ng()', all have the semantis of the num-ber three. The semanti rules math syntati strutures in the language toobjets in some domain that this language denotes.Note that the plae where syntax ends and semantis begins is not �xed1

| we deide what syntax is valid, and then how to get its semantis, so�ltering out some onstruts an be done by delaring them as syntatiallyinorret or by making their semantis void. For example, we an say thatthe expression `1+"a"' is syntatially inorret, or that it is syntatiallyorret but raises an error when evaluated or ompiled, making it mean-ingless. This is lear in a programming language implementation (deidingwhat omponent is responsible for deteting suh errors | the evaluator orthe parser), but it is also a question in natural languages (one option is that\books sky snail" is syntatially inorret beause it ontains a sequeneof three nouns, but another is that it is orret beause all three words arespelled right).The term \reetion" desribes three properties of a language, the �rsttwo are the fat that it allows syntax that denotes (by its semantis) its ownsyntati onstruts, and that it an talk about suh onstruts. In writtennatural language, the double quote symbol is used to speify that a pieeof text is not to be taken as representing onepts in the normal way butinstead, as representing the atual text itself. For example, the English word\water" stands for water, but the text \the English word `water' " uses theatual word \water" as a piee of syntax (and this sentene just mentioneda piee of text that ontained quotes). It is obvious that quotations are afundamental aspet of reetion.So the �rst thing to have in the domain represented by a language thatan reet itself is objets that stand for syntax objet of the language itself,in other words, make the set of syntax onstruts a subset of the representedvalues domain. Then, we must have some syntax that spei�es suh quota-tions (the double quotes in the natural language ase). When we have suha piee of syntax S1 that denotes a data struture that represents a piee ofsyntax S0, we say that S1 is the quotation of S0.Many representations an be used to speify quotations. One obvious rep-resentation is taken from the informal usage of quotes and raw text in naturallanguage, however, this is an extremely poor representation for programminglanguages and logial systems sine it does not reet the inherently reursivenature of syntatial onstruts1. A representation that is natural in the on-text of formal languages is using the language apabilities for de�ned types1Natural language syntax is strutured as well, but this struturing an be ambiguoussometimes whih means that a reursive tree struture an be insuÆient. This is not aentral issue sine when suh text is read, we automatially pereive its `parsed' form.2

(reords in the ase of programming languages, and tuples/sequenes/de�nedtypes in the ase of logial systems). Writinf suh strutures expliitly is alsoinsuÆient sine it makes quotation umbersome and ineÆient, spei�ally,repeatedly quoting some syntati objet makes the result grow exponen-tially. Other mehanisms like a quotation ontext, operator shifting2 and ageneral preproessing mehanism an all help solve this problem, these aredisussed in Setion 6.Most languages have an inherent evaluation proess: we �rst get thesyntax, then see what it denotes (if it makes sense) using the semantis ofour language, and then we evaluate the result. This is a mental proess thatstarts with a sentene as a piee of syntax, onverts it to a piee of semantiinformation, and then forms a �nal mental piee of information in our mindusing some form of evaluation.Evaluation an take several forms, for example | we an identify andexpand de�nitions suh as \Eli's wife" or pronouns like \you" and identifythem with other onepts suh as \Regina Barzilay". We an also use somelogial rules that are part of our language like eliminating double negations.More rules that we use to build suh a `mental image' an ome from theproess in whih this image is built, for example, adjetives speify propertiesof objets, so they are order-independent (e.g., \the big blue ar" and \theblue big ar"). Finally, some information is taken from rules of the physialworld: we know that \mixing our and eggs" is the same as \mixing eggsand our", or that \a half-full glass" is the same as \a half-empty glass" |this, of ourse, an depend on the ontext in whih it is used.There are also rules that handle quotations: this is interesting sine it isthe way natural language implements self-referene. Quotations an be usedas any other objet, and they atually desribe their ontents: so the �rstthing that makes this similar to the world of programming is that evaluationdoes not our inside quotes. As an example, the previous paragraphs men-tioned several piees of text that would evaluate to the same mental image ifthey were unquoted. More rules involve referening piees of text, as in \Thethird word of this sentene", or diret evaluation using terms like `meaning'as in: \The word `word' stands for the onept of a word."This leads us to the third property of a reeted language: when wehave the above two, then it is possible to talk about the language within2This is the term we use for using an operator name to reate a onstrutor thatgenerates quoted ode that mentions the original operator.3

itself, but there is no real guarantee that the quoted language is idential thelanguage itself. Therefore, the third property is the orrespondene betweenthis representation and the language. This an be regarded as the guard-dogthat makes sure represented objets behave as we expet them to behave.The form of this orrespondene depends on the nature of the language:� in a natural language we want quoted text to be related to the atualmeaning of that text;� in a programming language we want evaluation of quoted soure odeto behave the same as the same unquoted soure;� and in a logial system, we want a reetion inferene rule that antake a piee of quoted inferene and onludes that the same fat istrue (in other words, provability of some represented term implies thatthe term itself is true).3 Reetion in Programming LanguagesWhen talking about programming languages, we must be more preise. Aprogramming language has some formal rules for onstruting its syntax, anda funtion that evaluates suh input, produing some result. An operationalsemantis is de�ned by an evaluation proess that turns syntax into values.The evaluator an ome in several forms suh as an interpreter, or theomposition of a ompiler and mahine exeution. To reet here meansto be able to write a program that an itself generate piees of ode andexeute them. Of ourse, this is almost always possible, sine even a primitivelanguage like assembly ode an be used to write a text �le ontaining someother text, use the operating system to invoke the assembler over this �le andexeute the result. This is, however, an extremely rude way of implementingand using reetion3 beause:1. It relies on features that are external to the language itself (the OS andaessibility of a ompiler in this ase) whih is ineÆient, and mightnot be available at run-time.3I have heard of some prodution engineers in Intel that used a similar tehnique toimplement funtions that get a variable number of arguments using bath �les that wroteBasi programs. 4

2. Text �le generation, or text strings in general, is a low-level represen-tation that is diÆult to manage and understand, mainly beause theyfail to represent the reursive nature of the syntax [3℄.What is muh preferred for this purpose are data strutures within the lan-guage that an represent syntax, and, of ourse, some mehanism to speifyquotations. Quotation of a piee of syntax S0 in this ontext means: �ndinga piee of syntax S1 that evaluates to an objet whih is a representation ofS0. As mentioned earlier, the obvious way for representing syntax is to de�nereursive data strutures (assuming the language has some way to de�ne suhstrutures). This an vary from omplex representations like the AbstratSyntax Tree entries used by CamlP4 [4℄ to the simple lists of Sheme [6℄. Onething to note is that these data strutures de�ne the line between syntaxand representation | everything that an be parsed to suh strutures isonsidered valid syntax.The next step on the way to reetion is to have a user-available evaluatorin some reasonable way. One way of ahieving this is to implement one |this has the advantage of requiring only user data strutures and Turing-ompleteness. An obvious reason for rejeting this is that it is basiallyre-inventing the wheel that you already use, but an even stronger reason isthat this is not true reetion in the sense that the implemented evaluatorhas no relation to the language used exept for the programmer's wishfulthinking. The onsequent of this is that \true" reetion should be enabledusing the atual evaluation funtion whih exeutes the program itself |this is by means of exposing it to the language. This guarantees the thirdproperty mentioned above.This an be ahieved using a �xed-point priniple: implement an evalua-tor that an evaluate itself and use the result. The question here is whetherthis result is equivalent to the original evaluator4. A safer way for this isexposing the language's built-in evaluator to the language itself; by this, theinterfae barrier between the language and its interpreter is broken, but thisis the essene of reetion: using a language to talk about itself. Exposinginternal parts of a substrate system suh as a programming language is ageneral idea that an be used to ahieve greater exibility as demonstrated4Some ompilers suh as OCaml are built by bootstrapping | making the ompilerompile itself and iterate using the result, until the ompiled result is idential to theompiler itself 5

in \The Art of the Metaobjet Protool" [7℄.4 (Pure) ShemeIn the following two setions, the features of Sheme and Nuprl are om-pared. Nuprl is taken as a representative logial environment that ontainsan evaluator for a simple untyped term language. Sheme was hosen as aprogramming language representative due to its simple design ompared toother languages, espeially when it omes to its reetion apabilities. Thedisussion is limited to a pure subset of Sheme, side e�ets and other irrel-evant onepts are ignored. The syntati issues are the same as in standardSheme.4.1 SyntaxSheme's syntax is essentially the same as that of other languages in theLisp family. It is extremely simple | everything is either an atom of somefundamental type (e.g., numbers, symbols and strings), or a list of objetsrepresented by some parenthesized whitespae-delimited sequene of objets.This is atually the syntax for general Sheme objets; the syntax for thelanguage is a subset of these expressions (for example, lists represent applia-tions, symbols represent variables, a list beginning with the symbol `lambda'represent funtions et.). This is the �rst of several features that make ree-tion an integral part of the language. Quoting the Sheme Revised5 Report[6, p. 3℄:Sheme, like most dialets of Lisp, employs a fully parenthesizedpre�x notation for programs and (other) data; the grammar ofSheme generates a sublanguage of the language used for data.An important onsequene of this simple, uniform representationis the suseptibility of Sheme programs and data to uniformtreatment by other Sheme programs. For example, the `eval'proedure evaluates a Sheme program expressed as data.Sheme implementations have a reader funtion (`read') that parses input,and a printer funtion (`write') to display values. The philosophy behind6

this is that printed output always represents values equal (modulo pointerequality) to the result of feeding this output bak to the reader5.4.2 Semantis (Values)Values in Sheme are of two major kinds:� atomi values suh as symbols, numbers and strings6,� omposite values | lists holding an ordered sequene of values7.Lists are implemented using the `ons' funtion that onstruts a pairin memory (a ons ell) and the empty list (`'()'). Proper lists are eitherthe empty list or a pair of any value (the head of the list) and a proper list(its tail). Also, the `list' funtion is a onvenient shortut for reating lists:`(ons x (ons y '())) = (list x y)'.The way atomi values are represented in Sheme syntax strutures raisesa subtle point: the Sheme interpreter sees all input through the glasses ofits reader funtion | so when Sheme soure ode ontains, for example, anumber, the reader will parse this and reate the internal representation ofthat number, whih beomes part of the [parsed℄ input soure; therefore, thesyntax for a number is itself. Other values, inluding lists are also representedby themselves using the same mehanism.It was said previously that to enable reetion we must extend the domainof the language so it holds syntati struture objets | in Sheme this isdone by simply making objets be the syntax that represent themselves, sothe domain of Sheme objets is a superset of the domain of Sheme syntaxstrutures. This point is unique to Sheme (and other Lisp dialets) dueto the ombination of an interpreted environment with the way syntax isrepresented as values. More on this below.5This is not possible with all objets, for example, funtions usually annot be printed.Also note that feeding suh output bak to the interpreter will get it re-evaluated unlessquoted.6Strings do have some internal struture, but here we make a distintion between atomiand omposite objets in the spei�ation of Sheme programs so this is irrelevant.7Another thing that is ignored for this disussion is usage of \dotted-lists".
7

4.3 EvaluationA Sheme interpreter is basially a read-eval-print loop (\REPL"). The`read' and `print' parts are responsible for user interation (the mappingbetween internal objets and their textual representation) and `eval' is theatual Sheme evaluator funtion. Obviously, the evaluator is responsible forthe atual behavior of Sheme programs.`eval' is a [partial℄ funtion that takes some input soure ode (an inter-nal representation built by `read') and produes the results that this odeevaluates to, if any. It is an appliative-order evaluator that uses lexialenvironments.The fat that `eval' is just a funtion from Sheme values to Shemevalues might sound onfusing at �rst: how an it distinguish values thatrepresent ode from other values? The solution is simple | the input isalways taken as a piee of ode representation and the output is always apiee of data. For example, if the ode `(list '+ 1 2)' is evaluated, thereturn value is a list holding the symbol `+', and the numbers `1' and `2', andthis is not evaluated further. In fat, if the `eval' funtion was not availableto the user, then there was no way that it would ever get any input syntaxother than user ode | that is, it would never get applied on expressionsthat are results.So when a Sheme interpreter is used, entering a result string bak anresult in an equal objet in the ase of a non-symbol atomi value, but a dif-ferent value in ase of a symbol or a list, in other words, Sheme's evaluationis not idempotent. For this reason, the DrSheme pedagogi environment [5℄helps beginner-level students getting used to the language by \language level"settings, where the printer is modi�ed so values are printed in a way thatwill evaluate to an equal objet when re-entered | for example, the result ofevaluating `(list 1 2)' is the list holding one and two whih is printed as`(list 1 2)' or as `'(1 2)' by DrSheme. There are other implementationsthat hoose to display values in a similar way.What eval is doing on a given argument an be summarized as follows:1. If the argument is a symbol, its binding in the urrent lexial environ-ment is returned;2. If it is any other atomi value, then this value is returned;3. If it is a list and its �rst element is a speial-form then the orrespondingspeial evaluation rule is used; 8

4. If it is a list and its �rst element is a maro symbol, then the marois applied to the unevaluated arguments (soure ode piees) and theresult is evaluated further;5. Otherwise, it is a list and its elements are evaluated (in some unspei�edorder), and the �rst is applied on the rest.Note that rule 2 is possible beause values are atually part of the inputsoure representation.4.4 Quotations (Representations)The way Sheme syntax is de�ned leads to the fat that Sheme soure odeis represented by data objets that are part of the language and aessibleto user-programs; the syntax of Sheme programs is that of these objets.The same holds for other Lisp dialets. This, however, was not always thease: the Lisp 1.5 Programmers Manual [9℄ spei�es two ways of expressingprograms:S-expressions These are symboli expressions that are used for representingarbitrary data | this inludes Lisp soure represented in internal form.M-expressions The atual soure language that a Lisp programmer usesis named the \meta-language", sine it spei�es how S-expressions areproessed. M-expressions an be represented in the form of S-expressionfor Lisp programs that use other Lisp programs as data.The distintion between the two was supposed to be lear: programsin the form of M-expressions are what the ompiler works with, while S-expressions are used for internal data | sometimes representing Lisp syntax.However, an evaluator funtion was written, leading to a Lisp interpreter forLisp programs that are written in S-expression form. This led to the repre-sentation of Lisp ode using S-expressions being the dominant programminglanguage [8℄.It might be possible to use a more `standard' syntax in a smarter way thanthe one intended to be used in Lisp 1.5 | modify the reader and the writerfuntions so both use the same syntax | essentially modifying the way listsare represented as text. However, this would require extra information suhas what symbols are in�x operators, their preedenes et. This is furtherompliated by the fat that we might want to print some objet as denoting9

data rather than ode (for example, `(foo '(a b) '(if of uf))'). It istherefore sensible to stik to the simple syntax.As said above, Sheme values represent themselves, and omposite pieesof syntax are represented by lists, so quotation beomes trivial: to quote apiee of input soure you simply write an expression that will have it as itsresult. The only missing piee to omplete this piture is the way symbols anbe a result of a Sheme expression | the evaluator treats symbols as variablereferenes, so a new speial form named `quote' is added to the language,whih stops evaluation of a symbol: the result of evaluating `(quote a)' isthe symbol `a'.Now we know that:� to quote a symbol, we wrap it by a `quote' speial form;� to quote any other atomi value, we simply use it (as disussed above);� to quote a omposite syntax (a list) | use the `list' funtion to reatethe list.For example, the quotation of `(+ 1 2)' is `(list (quote +) 1 2)'.Finally, quoting is made easier by extending it so it stops evaluation ofany Sheme syntax objet inluding lists. For example, using the single quoteharater makes the quotation of the previous example as simple as `'(+ 12)'. This is generally disussed in Setion 6.1 and the Sheme ase is detailedin Setion 6.3.4.5 ReetionLisp was designed for easy symboli omputation, part of whih was evalu-ating Lisp ode using Lisp ode. Sheme, as a modern and elegant dialetof Lisp, was designed to be as lean and as simple as possible. The lessonlearned from Lisp led to making reetion usage as simple as8:(eval '(+ 1 2))This simpliity omes from two main fators:8Atually, this is not the way `eval' is de�ned in the Sheme Report. In fat, `eval'was introdued only in the 5th Revised report in 1998.10

� The syntati strutures are part of the domain of Sheme values: non-symbol atoms represent themselves, quotes an be used to get symbolsas values and lists an be onstruted by users.� The evaluation funtion (`eval') is available to user programs.There are few other supporting mehanisms suh as quasi-quotes, maros etthat are disussed below.As said in Setion 3, we an get the evaluation funtion for our own lan-guage either by using a �xpoint or by exposing the atual evaluation funtionto the user level | breaking the abstration barrier between the languageand its implementation. The seond way is what Sheme implementationsusually do: the `eval' funtion is the same as the one that the implementa-tion uses for evaluating ode. This it is simpler, safer and more eÆient. Itshould be noted that suh implementation is not required by R5RS, the onlything that is required is the availability of an `eval' funtion that evaluatesSheme expressions.The fat that syntax strutures are part of the domain of Sheme valuesis another suh exposed internal mehanism: the Sheme implementationand user programs share the same data strutures. This is required by thestandard so Sheme ode an always be used as data, for example, as inputto `eval'.This way of reeting a system by exposing some of its internal fun-tionality to its users is alled proedural reetion, see Smith [10℄ for moredetails.5 NuprlNuprl is a logial environment implementation that onnets onstrutivelogi and programming. It is a andidate system for an implementation ofreetion so the onnetion between the logial meaning and the program-ming meaning of reetion an be made expliit.5.1 SyntaxTerms are the fundamental objets Nuprl manages: they are used for input,output and internal proessing. The information that terms represent omesfrom their operator name, their tree struture, and from attahed atomi11

values (parameters). The struture of a typial Nuprl term is a tree strutureof terms with no parameters and terms with parameters and no sub-termsas leaves.In short, terms and parameters provide a simple and uniform syntax forNuprl, muh like lists and atomi values in Sheme. There are, however,some di�erenes as we will see.The atual user-interation uses a struture editor for entering terms anda display form mehanism for visualizing terms. This is a rather tehnialpoint that makes life a little easier for users9: the internal representationis the same no matter how it is presented. The analogy for this in Shemewould be a modi�ation to the reader and printer funtions as disussed inSetion 4.4.5.2 Semantis (Values)In Nuprl there are no \atomi values" as in Sheme | there are only terms |attahed parameters provide the atual ontent of term values. Sine thereare no atomi values, there is an additional mehanism to speify what termsstand for [anonial℄ values (named value terms) and what terms should beevaluated further to get a value. For example, numbers are representedin Nuprl by `natnum' terms with no subterms and with a parameter thatspei�es the atual value, for example: `natnumf3g()'. Value terms haveno spei�ed meaning | they stand for themselves. This is due to the fatthat evaluation in Nuprl has the form of normalizing terms, substitutionsan our in any order.5.3 EvaluationTerms are used in Nuprl as the elementary data objets, representing logialsentenes. In addition, the system ontains an evaluator omponent thatuses terms as an untyped lambda-alulus like language. Terms that arenot delared to be values, get redued by the evaluator. These terms haveevaluation fragments whih are small funtions that de�ne redutions thatthe evaluator use to handle them. This evaluator is di�erent than standardprogramming language evaluators, it is a normalizing proess: a term an beredued until it is a value term.9This is espeially neessary sine many Nuprl users are mathematiians.12

Another di�erene between evaluation in Sheme and in Nuprl is thatbeause a term and its normalized form are always equal, then the evaluationan be lazy where Sheme is eager. Moreover, there is another importantpoint about the way Nuprl treats terms that should be made lear at thispoint: there is no distintion between two terms if one an be redued tothe other (or both to a the same). The evaluator gets terms as input, andredues subterms lazily as neessary | this makes it a funtion that mapsterms to terms. This is similar to Sheme, but the fundamental di�erene isthat terms that an be redued to the same (alpha-equal) term are onsideredindistinguishable, in other words, this eval funtion is idempotent: there isno di�erene between eval(x) and eval(eval(x)). If evaluation in Sheme wasde�ned similarly, then evaluating the expression `(ar (list (list '+ 12) 1))' would yield `3' beause `list' reates an atual expression. The3Lisp language [10℄ faes the same problem and the solution was to make ituse normalization as well.Nuprl's approah allows a lot of freedom in the sense that di�erent eval-uation tehniques an be intermixed, it even allows a more omplex systemthat spei�es what parts should be redued. In other words | the Shemeevaluator knows that anything that the evaluator gets is a syntax value andanything it returns is a simple value, while the Nuprl evaluator always returnsa term and these terms are lassi�ed to data values and reduible terms: thisallows it to do an inomplete job, deferring unneessary redutions.5.4 Quotations (Representations)The restrition implied by the evaluation proess implies that exposing theterm onstrutor in Nuprl so terms represent themselves is impossible: asdesribed above, Nuprl an redue arbitrary subparts of some expression,whih means that terms annot represent themselves sine there is no wayto speify that they should be treated as values. There are several possibleways for making syntax representation possible:1. Represent terms using a simple reursive type de�nition that will beomposed of a pair of lists, one representing parameters and the otherrepresenting bound subterms. This is the simple/naive approah.2. Change the term struture so that there will be an additional `ag'parameter in terms, speifying whether a term is quoted or not, it13

should be possible to aumulate these ags, whih will denote \quote-ness" levels. These ags only indiate the term as quoted, not itssubterms: we shift the meaning of the operator with this ag fromwhat it denotes to a representation of its own syntax; we name thisoperator shifting. This is an implementation hange.3. For every possible term, make a orresponding new value term that willrepresent it, this should be done arefully so all terms are representable,inluding these terms as well.4. Modify the evaluator so it is more similar to the Sheme evaluator.This will, naturally, redue its exibility. Note that this is a suggestionon how to design the way evaluation will happen, it an still be a lazyevaluator.5. Create a new term named `quote' that has a single sub-term, and mod-ify the evaluator to treat these terms as data and disallow redutions inthem. This violates the priniple of uniform management of terms bymaking substitution ontext-sensitive (free variables in quoted termsshould not be replaed). This has a drasti e�et on the system sineit hanges the way equality behaves.6. Do the same, but have no subterms, instead keep the quoted termas a parameter value. This means that no implementation hange isneeded. However, the struture of the quoted term is not easily aes-sible, spei�ally, we annot have subterms that desribe parts of thequoted term.The standard approah in Nuprl, whih is the one taken in [2℄ and in [1℄,is the �rst one above. A suggested improvement is the seond one whihis temporarily haked similar to the third one: for every term we delarea mathing value term that is used to represent the syntax of that term,But eventually we want this to be done automatially by suh quote agsand seletor funtions that will be able to pull information out of quotedterms (see Setion 6.4). There is a `rep' funtion from terms to terms, thatprodues the anonial representation of a term; the Sheme equivalent ofthis funtion, when the simple approah is used, would roughly look like this:(define (rep expr)(if (list? expr) 14

(ons 'list (map reps expr))(list 'quote expr)))but this is, of ourse, simpler using the extension that allows quoting everyobjet, speifying quoted ontexts:(define (rep expr)(list 'quote expr))Another funtion, `unrep' is the opposite operation, whih in Sheme (giventhe above funtion de�nition) is simply `eval'. As with any other Nuprlterm, terms are the same as ones that are the result of their evaluation, so,for example, the `unrep' funtion must be partial sine some terms representin�nite omputations. Note that the only way to speak about these funtionsis to lift the disussion to the quoted level: for example, it is impossible towrite the above Sheme funtion so it will get a piee of unquoted syntaxsine that syntax will get evaluated (but it is possible to write it as a maro).5.5 ReetionThe above quotation mehanism allows reetion to be implemented. Thishowever was never done in pratie: a theoretial disussion appeared in[2℄, and an attempt to get a pratial implementation was done in [1℄. Thispaper is an attempt to be the �rst step on the road to a pratial workingreetion implemented in Nuprl of a partial subset of the system exposedinternals, unlike the ambitious attempt of [1℄ for the reetion of the fullNuprl in terms of itself. The plan is to use operator shifting to exposea representation of term strutures, together with internal funtionality tomanipulate these representation.6 QuotationsSo far, we have examined Sheme's reetion apabilities and ompared themto Nuprl's. The problem with what was done in Nuprl is that it never reaheda stage of pratial usage. To get to suh a working system in a new way, somevariation is needed: here we inspet possibilities for quotation mehanisms,from a general point of view and possible implementations.15

6.1 Quotation by PreproessingNow that we know how to use quotations, we enounter another problem:using quoted data strutures in the obvious way is very umbersome. Thisis true even for the simple list strutures in Sheme | a simple expressionsuh as:(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))is quoted (using the quote harater shortut) as:(list 'if (list '<= 'n 1) 'n(list '+ (list 'fib (list '- 'n 1)))(list '+ (list 'fib (list '- 'n 2))))As said in Setion 2, some quote notations are muh simpler to use, forexample, if we would have hosen to represent Sheme ode as strings, thenthe quoted expression beomes as simple as:"(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))"but, as already mentioned, strings are a very poor tool for syntax repre-sentation for lak of reursive struture. The reason that makes strings apoor representation is exatly what makes `good' representations umber-some: we want the reursive nature of the syntax to be represented in ourdata struture, so we always get these onstrutors stuk in the middle ofthe represented text suh as the extra `quote's and `list's in the exampleabove. A property of a quotation mehanism that is easy to use is that orig-inal syntax appears literally in the expression that is its quotation, suh asthe string example (as disussed in Smullyan [11, Chapter 1℄).The way Sheme solves this problem is by introduing the `quote' speialform. This allows us to write:(quote (if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2)))))or even simpler:'(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))When onsidering this, it looks like a neat solution that requires a minoraddition to the language of the `quote' speial form. However, we an ob-serve that if we know how to translate a piee of syntax to another whih16

is its representation, then it is possible to write a soure ode transforma-tion funtion that will do this for us so we are not even aware of the atualway these objets are implemented. All we need is some form of quotationto be added to the input syntax, then it is easy to use suh a transforma-tion funtion as a preproessor that will e�etively eliminate these onstrutsand substitute the atual full syntax onstrutors. If this funtion is appliedinside-out, we get it to handle multiple levels of quotations for free. Forexample, transforming this ode:(f '(g '(+ 1 2)))starts at the internal quote, getting:(f '(g (make-expr '+ '1 '2)))then the seond quote is expanded and the �nal result is:(f (make-expr 'g (make-expr 'make-expr ''+ ''1 ''2)))This example is using a `make-expr' funtion that onstruts expressions,whih avoids speifying how atomi onstants are enoded. An atual ode inSheme is simpli�ed by the way quote haraters are handled by the reader |all we handle are expressions with the symbol `quote' in their �rst position.An example for suh a preproessing funtion is shown in Figure 1.(define (preproess expr)(define (quotify expr)(ond ((pair? expr) (ons 'list (map quotify expr)))(else (list 'quote expr))))(ond ((not (pair? expr)) expr)((eq? (ar expr) 'quote)(quotify (preproess (adr expr))))(else (map preproess expr))))Figure 1: Preproessing quotes in Sheme.This ode is generi: it an be used in any language as a preproessor forthese simple quotes | it only relies on basi mehanisms of the underlyinglanguage: being able to onstrut and deonstrut expressions that representsyntax, quoting symbols and managing lists in the Sheme ase. Atually,it is very di�erent from the way Sheme handles quotes whih is desribed17

below. This ode an also demonstrate the fat that writing naive expressionsto generate struture that represent some syntax ends up in an exponentialblowup of expression sizes, see page 22 for an example.The CamlP4 pakage for OCaml is an example for this approah: itextends the input syntax with quotation marks, uses the parser on the stringontents of these quotations and returns some transformation of the resultingabstrat syntax tree objet; this is further ompliated by typed abstratsyntax strutures | a quotation must speify the type of syntax piee toparse.6.2 A Quasi-Quotation PreproessorQuoting piees of syntax using suh a mehanism as desribed above is veryonvenient, but we an get still greater onveniene. Quotes are used forspeifying �xed syntax piees, but when writing programs that manipulatesyntati strutures, it is desirable to mix quoted syntax objets with `normal'ode. For example, here is a funtion that manipulates input values that arequoted objets themselves:(define (build-plus exp1 exp2)(list '+ exp1 exp2))Using simple quotations is ertainly not enough sine the body of(define (build-plus exp1 exp2)'(+ exp1 exp2))quotes the two variables instead of using their values. The solution is to usequasi-quotation: this is taken exatly as the normal quotation above, exeptthat we allow another input onstrut for `unquoting' some parts of thequasi-quoted expression. For example, in Sheme, the above ode beomes:(define (build-plus exp1 exp2)`(+ ,exp1 ,exp2))where ``x' is a shortut for `(quasiquote x)' and `,x' for `(unquote x)'.The way to preproess a quasi-quoted onstrut is to turn it into anexpression that generates the templates | using `quote's and `list's in theSheme ase, but leaving unquoted values as they are. This means that ``(+,exp1 ,exp2)' is transformed into `(list '+ exp1 exp2)'. This is ahieved18

(define (preproess expr)(define (quotify expr)(ond((and (pair? expr) (eq? (ar expr) 'unquote)) (adr expr))((pair? expr) (ons 'list (map quotify expr)))(else (list 'quote expr))))(ond ((not (pair? expr)) expr)((eq? (ar expr) 'quasiquote)(quotify (preproess (adr expr))))(else (map preproess expr))))Figure 2: Preproessing quasi quotes in Sheme.by the simple ode in Figure 2, whih is the same as the ode in Figure 1with a di�erent treatment for unquoted forms.This is also di�erent than the way Sheme handles `quasiquote's, but us-ing it gives the same onveniene. As is the ase with the ode from Figure 1,this ode is generi in that it requires minimal support from the underlyinglanguage, yet it provides the full onveniene of using quasi-quotations astemplate spei�ations. The surprising fat here is that the single additionto this ode is enough to handle nested quasiquotes when it is wrapped in thereursive `preproess' funtion. Again, an example for this is the CamlP4quotation mehanism: it extends the way that quotation strings are parsedby allowing `anti-quotation' onstruts providing the same funtionality.The simpliity of using quasi-quotes with unquotes omes from their nat-ural view as templates with holes to be �led. A very brief experiene withthese is enough to get onvined by their usefulness. The [planned℄ way ofimplementing a quotation user-interfae in Nuprl with display forms and amodi�ed input method whih both use the represented terms with di�erentolors is another form of ahieving this goal: no matter how the quotationmehanism atually is implemented, it is hidden behind an abstration in-terfae. The input method will be very similar to the above ode, using therepresentation of terms disussed in Setion 5.4.6.3 Quotations and Quasi-quotation in ShemeAs disussed above, quotations and quasiquotations an be handled in an\evaluator-transparent" way by using a preproessor. However, the way that19

Sheme implements these is more sophistiated.Sine the `quote' symbol is already treated as a speial form that stopsevaluation, it is natural to extend its behavior to any expression. Using itwith atomi values is not useful sine they evaluate to themselves anyway, butwith lists it beomes very handy. One thing to note here is that sine quotesare being treated as evaluation stoppers, then the quoted value appears asa literal onstant in the ode, so when semantis of referenes are beingonsidered, it is atually di�erent than using the equivalent `list' form10.Quasiquotes are also implemented as speial forms in Sheme. This isa subtle point that might not be obvious when reading the Sheme Report.First, it appears as a derived expression (one that an be expressed usingprimitive syntax), seond, the way it spei�ed is, indeed, by translation toprimitive syntax11:If a omma appears within the hqq-templatei, however, the ex-pression following the omma is evaluated (\unquoted") and itsresult is inserted into the struture instead of the omma and theexpression.. . .The external syntax generated by write for [quasiquoted expres-sions℄ may vary between implementations.So, it looks like all usages of quasiquotes are eliminated when it is being readin | however it is possible to quote (or quasiquote) quasiquoted expressions,as the Report states:Quasiquote forms may be nested. Substitutions are made only forunquoted omponents appearing at the same nesting level as theoutermost bakquote. The nesting level inreases by one insideeah suessive quasiquotation, and dereases by one inside eahunquotation.As demonstrated above, having quasiquotes as a speial form in the lan-guage is not neessary | the way it is added to Sheme makes it moreeÆient. An additional note about this feature in Sheme (or any other Lispdialet), whih is lear by delaring it as derived syntax, is that quasi-quotesan be (and sometimes are) implemented as maros that preproess the ode10This is the why the Sheme Report restrits suh values as immutable values.11This disussion ignores spliing. 20

so this essentially makes quasi-quotes work exatly as desribed above. Thisis also the reason why it is simpler to add quasiquotes to the language as amaro than eliminating any mention of it with a seperate preproessor.6.4 Suggested Quotations in NuprlWhen onsidering a quotation mehanism for reetion in Nuprl, the waySheme de�nes them is one option. However, taking into aount the wayNuprl terms are evaluated, problems are enountered. The major problemis that suh `quote's or `quasiquote's onstruts (terms, in this ase), workby reating a ontext that hanges the meaning of expressions | the waythey evaluate. This is perfetly �ne for Sheme evaluation sine marosget expanded before ode is exeuted, and even if treated as speial forms,things are still okay, sine expressions annot be evaluated at arbitrary plaesbut only outside-in. In Nuprl, however, redutions an our at arbitraryplaes, so having these quotations means that any substitution of a term mustonsider its ontext. This is a ritial point in the system whih de�nes howequality behaves. Another point where things get unneessarily ompliatedis the fat that terms that are subparts of other terms beome ambiguous:we need extra information to speify whether they are quoted or not.The desired solution should have the property of using normal terms thatare not treated speially by redutions and in general, modifying as littleas possible existing funtionality. All this should be aomplished while theresult is still onvenient enough to use. One suh solution is presented inhttp://some-url-in-stuart's-home-page, whih is similar to option #2on page 13. The idea is that we add quote-tags to operators, and thesewill be treated as if they were de�ned as anonial terms representing theorresponding operators. Operators with these tags are alled shifted opera-tors. One the Nuprl implementation is modi�ed, then the full representationusing the reursive type de�nition is not needed.This an be demonstrated by a simple Sheme program: simulate shiftedoperators by appliation of quoted symbols. The result program is in Fig-ure 3. Using this ode as a preproessor, the result of entering12:('+ ('* '1 '2) (* 1 2))is the list (+ (* 1 2) 2).12Note that this uses Sheme's speial treatment of atomi values, the atual multipli-ation should atually be quoti�ed. 21

(define (preproess expr)(ond ((and (pair? expr)(list? (ar expr))(= (length (ar expr)) 2)(eq? (aar expr) 'quote))(preproess (ons 'list expr)))((list? expr) (map preproess expr))(else expr)))Figure 3: Preproessing shifted operators in Sheme.This is, of ourse, only a simulation that uses atual Sheme quotes forreating syntax representations, but it is a good demonstration of this ideawhen it is implemented for Nuprl terms: `'+' is the shifted version of the `+'operator. One additional fat that an be observed here is that this quotationstyle is also eÆient: it prevents the exponential growth of expression sizeswhen it is quoti�ed multiple times. For example, if we use the preproessorof Figure 2, then quoting the simple expression (+ 1 2) three times yields:(list 'list(list 'quote 'list)(list 'list (list 'quote 'quote) (list 'quote '+))(list 'list (list 'quote 'quote) (list 'quote '1))(list 'list (list 'quote 'quote) (list 'quote '2)))whereas the new style of quotation using operator shifting yields a simple:('''+ '''1 '''2). Note also that the Sheme-style version of this will beeven simpler: '''(+ 1 2), but this is due to the simpliity of using ontexts.As demonstrated, the ontext of a logial system suh as Nuprl makesSheme-style quotes too omplex and the above quotation mehanism helpsin that. However, ontextual quotes are still useful, as an be seen by theirusage in informal language. This makes a good justi�ation for providing aSheme-like quasiquote mehanism that will be translated by a preproessorto atual terms, similar to the idea of olor-oding quotations.7 Conlusions� The provability/programming relation expresses itself as proofs thattalk about other proofs whih translate to programs that write pro-22

grams | this is lose to maros and staged evaluation/ompilation.Working with maros is an old subjet that is very well-known andI believe that these tehniques an help formalizing provability up toa point where it an be used in a omputer-aided logi environmentsuh as Nuprl. One example for a possible ontribution of this mightbe an implementation of tatis as meta-proofs. An implementation istherefore needed to fully understand this relation.� A small, fully-reeted implementation of a \Mini-PRL" system willbe a good starting point for playing with these ideas. This should bea very small system that an do simple re�nements without the majoromplexity of Nuprl (suh as tatis, display forms, interative editor,sophistiated rewrites et.). There is enough to learn from suh anexperiene, and it an then be extended.� The simpliity of Sheme, whih is ahieved by exposing the evaluationfuntion of the language to its programs makes reetion simple and`neat' | it is very small, very simple and very elegant. I believe thatsimilar tehniques an be useful in the Nuprl ase as well.� The same also holds for the syntati data strutures: exposing theinternal struture onstrutor (of terms in the Nuprl ase) to the userlevel will make reetion muh simpler. This an be done as disussedin Setion 6.� The bene�ts of having a reetion mehanism was shown as an ex-tremely useful tool in numerous domains, not only programming lan-guages, but other substrate systems as well | operating systems, ob-jet systems, data bases et. Nuprl is a substrate system of yet anotherkind, and as suh, it will probably bene�t as well from a reetionmehanism. One suh bene�t, getting tatis as results of reetedproofs is mentioned above, but again: an implementation is neessaryto fully explore the possibilities.� Another question that needs an answer is whether it is possible toahieve reetion by proving a Mini-PRL system inside itself and haveit be the extration of this proess. This will be the �rst logial systemwhih an \verify itself" in some interesting sense. We know that theremust be some external mehanism to make a reetive system work, it23

will be interesting to loate this minimal mehanism when a reetivelogial system is implemented and to ontrast it with the programminglanguage world.Referenes[1℄ W. Aitken. Metaprogramming in Nuprl Using Reetion. PhD thesis,Computer Siene Dept., Cornell University, Ithaa, NY, 1994.[2℄ S. F. Allen, R. L. Constable, D. J. Howe, and W. Aitken. The semantisof reeted proof. In Proeedings of the Fifth Symposium on Logi inComputer Siene, pages 95{197. IEEE, June 1990.[3℄ A. Bawden. Quasiquotation in lisp.[4℄ D. de Rauglaudre. CamlP4, April 2000.[5℄ F. Felleisen, F. R. B., F. M., and K. S. The drsheme projet: Anoverview. SIGPLAN Noties: Funtional Programming Column, 1998.[6℄ R. Kelsey, C. W., J. Rees, et al. Revised5 report on the algorithmilanguage sheme. Journal of Higher Order and Symboli Computation,11(1):7{105, 1998.[7℄ G. Kizales, desRivieres J., and B. D. G. The Art of the MetaobjetProtool. MIT Press, Cambridge, MA, 1991.[8℄ J. MCarthy. History of lisp. February 1979.[9℄ J. MCarthy et al. Lisp 1.5 Users Manual. MIT Press, Cambridge, MA,1962.[10℄ B. C. Smith. Reetion and semantis in Lisp. Priniples of Program-ming Languages, pages 23{35, 1984.[11℄ R. M. Smullyan. Diagonalization and Self-Referene, volume 27 of Ox-ford Logi Guides. Oxford Sienes Publiation, Oxford, 1994.
24

