
Practical Reflection in Nuprl

Eli Barzilay Stuart Allen Robert Constable

March, 2003

Abstract

We present an implementation of reflection for the Nuprl the-
orem prover, based on combining intuitions from program-
ming languages and logical languages. We reflect a logical
language, adapting the common practice from Lisp dialects
of avoiding redundant coding whenever it is possible to ex-
pose internal functionality. In particular, concepts of the
logical language such as term syntax and substitution are
directly reflected as primitives. The resulting notation has
both the expressiveness and the simplicity needed for ordi-
nary syntactic explanations and arguments. The system is
demonstrated by formalizing Tarski’s result regarding the in-
ternal undefinability of a Truth predicate, closely following
a standard “paper proof”. We believe this shows to good
effect our rather transparent quote-like notation, especially
by exploiting colors.

1 Introduction

Reflection is known as a useful in both theory in practice,
yet, a practical implementation of reflection, similar to the
one used in programming languages, in a logical setting is
difficult. We present our work on such an implementation,
based on the simple intuition in computer science and logic
that redundancy is to be avoided: if some information is
encoded in some form, duplicating it is a potential sink of
unnecessary human resources, and worse — a possible source
of mistakes. Following this principle, the well established
practice of computational reflection in Lisp dialects is both
cheap and robust — instead of implementing an evaluator on
top of the exiting one which imitates it, the actual underlying
interpreter which is being used at the system (meta) level is
made available to the user (object) level. The result is cheap
as there is only one implementation, and robust since there is
no need in proving that the result has the same operational
semantics as the original. We name this strong reflection as
the reflected system is inherently identical to the system it
reflects by the fact that the same functionality is being used
at both levels.

Logical languages are more expressive than programming
languages, as they deal with truth semantics rather than be-
ing limited to an operational one. Since computer implemen-
tations of such systems are computational in nature, imple-
menting reflection is usually achieved by a re-implementation
which includes facts about needed functionality, as well as
its operational equivalence. In other words, the context of
a theorem-prover naturally leads to the re-implementation
which is easily avoided in the case of programming languages.
A classic example of this approach is Gödel numbers which
are a good theoretical tool, yet unreasonable for practical
usage (i.e., as an actual code representation in a compiler).

We demonstrate an implementation of reflection in the
Nuprl theorem prover by borrowing the common program-
ming languages technique of exposing existing system func-
tionality to the user-level. The initial idea is to use the very
same underlying term representation for user-level term rep-
resentation. Using strong reflection for this implementation,
the embedded system is inherently identical to the original,
and the implementation is simple. Still, facts and logical de-
scriptions of such functionality do not exist in a computer
program but are necessary to reasoning about it.

2 New Techniques

Term Representation

A fundamental issue for any syntactically-reflected system is
the representation of syntactic objects. In Lisp dialects the
same data structure is used by both the system and the user,
and proper quotations are achieved via the quote special
form which treats any piece of syntax as accessible data. This
approach cannot be used with Nuprl as it uses normalization
rather than evaluation: a basic property is that subterms can
be replaced by computationally equal ones, and introducing
a quotation context term will break this. Our solution for
this problem is by operator shifting — a shifted operator is
one which constructs a representation of the original one,
and every operator can be shifted, including already-shifted
operators.

Similar to Lisp, Nuprl uses a uniform term structure for
syntax: terms have an operator name and subterms. But
unlike S-expression, Nuprl terms have explicit binding posi-
tions for any binding operator. This introduces a dilemma:
one option is making shifted operators represent bindings as
subterms, resulting in a familiar concrete syntax, but the re-
sult deviates from the original term by changing the binding
structure. This option was used in previous work on Reflec-
tion in Nuprl [1]. Another option is to keep the same binding
structure when shifting an operator — this option is theoret-
ically riskier as it requires redesigning a non-concrete syntax:
in Nuprl, a binding operator always denotes a higher order
function, meaning that such a representation is a higher or-
der abstract syntax (HOAS, [3]) as explained in [2], where
the arguments to shifted operators are substitution functions.
Considering these options, we have chosen the second based
on the availability of a neat implementation which uses the
existing functionality for shifted operators. This poses some
well known HOAS problems, mainly avoiding exotic terms

and devising an induction principle; the first is addressed
in [2], and the second problem is part of current work.

For example, indicating operator shifting by underlining
their name, the Nuprl lambda term that adds one to its input
might look like this: lambda(x.add(x,1)), and it is denoted

1



by: lambda(x.add(x,1)), which is simply gotten by shift-
ing all operators other than bound variable. The same term
is also denoted by lambda(y.lambda(z.add(y,z))(1)), be-
cause the lambda operator contains the same substitution
function. Notice that this last example mixes shifted opera-
tors with unshifted ones in a way which is as clear as using
quasi-quotations in Lisp.

We visualize shifted operators using the Nuprl display-
form engine, indicating different quotation levels with dif-
ferent colors (using underlines in this text), which is as close
to true quotations as we can get in this logic.

Term Functionality

By aiming for a practical demonstration of the effective-
ness of our methods, we identified necessary functionality.
Initially, a ‘quote’ and an ‘unquote’ operations are needed
system-level functions, which operate on the visible concrete
representation — these are “translation” functions which
translate external user syntax to the HOAS internal repre-
sentation. These functions are not visible at the object level,
where a ‘representation’ and a ‘reference’ operations are used
instead to shift levels of user data — these are implemented
with an ‘up’ and ‘down’ computation rules, and defined to
handle bindings properly.

Another fundamental functionality is substitution: obvi-
ously, the Nuprl system has substitution functions as part
of the implementation, but like ‘quote’ and ‘unquote’, these
work internally on concrete, fully specified terms. In con-
trast, user-level term representations might contain “incom-
plete” terms which contain descriptive parts. For exam-
ple, lambda(x.add(x,t)) contains an unknown part, so we
cannot do any full substitution over it. The solution for
this is a user-level substitution that we know how to exe-
cute in single steps: lambda(x.add(x,t))[e/v] is reduced
to lambda(x’.add(x’,t)[e/v]) where x’ is a renaming of
x. This renaming is done with the system-level substitu-
tion, resulting in a consistent behavior, while keeping the
principle that user-level statements have no access to con-
crete binding names. (The relation between ‘up’/‘down’ and
‘quote’/‘unquote’ is similar to the relation between the in-
ternal substitution operation and the single step version.)

This leads to a related issue: in Nuprl, variables are sim-
ple terms, which means that it is now possible to use quota-
tions of such terms: a representation for free variables with
user-accessible names. This can be confusing: terms are rep-
resented by HOAS object so there is no access to bound
variable names, so how can we mix this with quoted free
variables? One way to settle this issue is that no user-level
‘up’ operation can be used to “materialize” a hidden bind-
ing name to a visible quotation, and similarly, no user-level
‘down’ operation can be used on such objects to “capture”
them back to a binding. For another viewpoint on this is-
sue, the discussion in [2] of the equivalence between HOAS
and concrete terms used coercions from concrete terms to
their α-equivalence classes and back — and clearly, the α-
equivalence class of the free variable ‘x’ is the singleton set
‘{x}’.

Finally, we take a different approach from the usual ver-
bose arguments on the issues of closed terms, free/bound
variables and substitution explained using them. We view
substitution as the fundamental concept and use it to explain
other concepts. For example, free variables are exactly the
set of objects that can be substituted, and closed term(t)

is defined as the set of terms such that t[e/v] = t.

3 Practical Demonstration

Our formalization of reflection is demonstrated by producing
a formal proof of the Tarskian argument regarding the inter-
nal undefinability of a Truth predicate. The purpose of this
was twofold: the first was to show that one can carry out
conventional styles of syntactic arguments using the uncon-
ventional HOAS. The second purpose was to find out what
functionality needs to be exposed for practical purposes. The
proof followed a previous paper proof that was written for the
sake of clarity rather than for an easy implementation and
which was about concrete syntax — it preceded the imple-
mentation of the necessary tools by almost two years, when
it was not at all clear whether we could cope with such prob-
lems as quoted free variables, substitution and proper se-
mantics. The surprising result is that not only were we able
to complete this a formal proof, but we were able to get the
formal version to follow the exact steps of the paper version.

This process demonstrated more than just being able
to complete the proof: a computer-aided theorem prover
equipped with reflection is a good educational tool, allow-
ing us to inspect different variations as well as clarifying
the nature of the new domain of syntactic values. For ex-
ample, using the system we can get a clear explanation of
tricky questions like how ‘↑↑t’ differs from ‘↑t’. Using exist-
ing Nuprl functionality, the text proof itself was converted
to Nuprl ‘hypertext’ containing term objects, making it pos-
sible to use Nuprl’s display form mechanism for visualizing
quotations and for alternative operator syntax.

References

[1] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and
William Aitken. The semantics of reflected proof. In Proceed-
ings of the Fifth Symposium on Logic in Computer Science,
pages 95–197. IEEE, June 1990.

[2] Eli Barzilay and Stuart Allen. Reflecting higher-order abstract
syntax in Nuprl. In Victor A. Carreño, Cézar A. Muñoz, and
Sophiène Tahar, editors, Theorem Proving in Higher Order
Logics; Track B Proceedings of the 15th International Confer-
ence on Theorem Proving in Higher Order Logics (TPHOLs
2002), Hampton, VA, August 2002, pages 23–32. National
Aeronautics and Space Administration, 2002.

[3] Frank Pfenning and Conal Elliott. Higher-order abstract syn-
tax. In Proceedings of the ACM SIGPLAN ’88 Conference on
Programming Language Design and Implementation (PLDI),
pages 199–208, Atlanta, Georgia, June 1988. ACM Press.

• Additional material extracted from the reflection implementa-
tion and the Tarski argument are available on-line at:
http://www.cs.cornell.edu/eli/reflection.html

2


