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Abstract
Students have trouble understanding the difference between lazy
and strict programming. It is difficult to compare the two directly,
because popular strict languages and popular lazy languages differ
in their syntax, in their type systems, and in other ways unrelated
to the lazy/strict evaluation discipline.

While teaching programming languages courses, we have dis-
covered that an extension to PLT Scheme allows the system to
accommodate both lazy and strict evaluation in the same system.
Moreover, the extension is simple and transparent. Finally, the sim-
ple nature of the extension means that the resulting system provides
a rich environment for both lazy and strict programs without mod-
ification.

Categories and Subject Descriptors D.3.m [Programming Lan-
guages]: Miscellaneous

General Terms Languages

Keywords Lazy and Eager Evaluation, Teaching Programming
Languages, PLT Scheme

1. Introduction
Computer science professors all over the world recognize the sig-
nificance of the definitional interpreter as a central tool in the un-
derstanding of programming languages. In this approach, students
understand the similarities and differences between programming
languages by writing interpreters for these languages. These in-
terpreters are structurally similar to formal specifications of the
languages they define (the defined languages). As the course pro-
gresses, the students learn about new programming language con-
structs by adding corresponding rules to their interpreters. Since
each interpreter is an extension of the prior one, they are typically
all written in the same defining language.

This approach is natural and informative, and it is adopted in
one form or another by many modern programming languages
textbooks [1, 8, 11]. In fact, this approach follows directly from the
maxim that “the best way to learn is to teach” and the observation
that writing a program is exactly this: the programmer must teach
the computer how to perform the given task, in the most detailed
and pedantic fashion imaginable.
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The notion of a definitional interpreter is an old one. Reynolds
[12] provides a synopsis of earlier work and is the starting point
for much of the later work. In this paper, Reynolds classifies defini-
tional interpreters based on two key features of the defining lan-
guage: whether they permit higher-order functions, and whether
they are call-by-value or call-by-name.

This classification adds a second axis to the space of definitional
interpreters. Along with the features we are adding to the defined
language, we must also consider the set of features in the defining
language. Do we wish to change them, as well?

At first glance, the answer is “no”. After all, we have observed
already that extending an interpreter is possible only when the new
and old interpreters are written in the same language. Changing
the defining language could force students to re-implement their
interpreters and needlessly disorient them.

Turning again to the question of how students learn, however,
we see that while they gain experience in specifying the defined
language, their experience in developing programs lies only in
the defining language. Indeed, students may graduate from such
a course without having written more than a few two-line programs
in each of the languages defined. That is, the only programs they
write are the test cases for their interpreters.

The clearest example of this problem is in the difference be-
tween strict and lazy languages. In a strict language, arguments to
a function are reduced to values before calling the function. In a
lazy language, however, arguments to a function are evaluated only
when they are needed. So, for instance, a function which does not
use its first argument will not cause that argument to be evaluated.
This change is sufficiently fundamental that most students under-
stand laziness only after writing many programs in a lazy language.
Merely altering an existing interpreter to define a lazy language
may not be enough to internalize the difference between strict and
lazy languages.

Some programming texts address this through what they call
“horizonal” integration, rather than the “vertical” integration of
extending a single interpreter with different features. Specifically,
they supplement their definitional interpreters with small program-
ming assignments in a language that contains the desired features.
So, for instance, the students might practice writing programs in a
lazy language such as Haskell before modifying their interpreters
to behave lazily. The problem with this approach is that the key
difference—laziness—is buried in an avalanche of other differ-
ences. Changes in syntax and changes in type systems prove to be
very large obstacles, particularly for beginning programmers. In-
stead, we would like a language that can behave either lazily or
strictly without changes to any other part of the system. That is,
laziness should be orthogonal to other features of the language.

We have discovered that this is possible, using the PLT Scheme
framework. By changing the “language level” to one that we pro-
vide, students may evaluate the same expressions in a strict lan-



guage or in the corresponding lazy one. No changes whatsoever to
the program text are required.

A combination of features makes this orthogonal switch pos-
sible. Scheme’s syntax system [10] provides the tools needed to
extend and alter the language, and PLT Scheme’s module system
provides the abstraction needed to make this change local, so that
code written in the strict language is still evaluated eagerly.

A key advantage to this architecture is that PLT Scheme’s ex-
isting facilities are available to both strict and lazy languages. This
includes a rich set of libraries, and a variety of program tools, in-
cluding a syntax checker, a coverage tester, and an error-tracing
facility, among others [5, 3].

This paper has three more sections. In section 2, we show how
the issue of laziness arises in a programming languages course, how
our lazy language fits into the curriculum, and how the existing pro-
gramming tools work without modification on the new language. In
section 3, we show how the PLT scheme environment makes it pos-
sible to add laziness in a high-level way. Section 4 concludes.

2. Laziness in Action
To illustrate our extension, we consider a concrete example of its
use. What follows is drawn from lectures given in Northeastern’s
Programming Languages course1. The course uses Krishnamurthi’s
textbook “Programming Languages: Application and Interpreta-
tion” [11]. In this approach, each new concept is

• introduced and analyzed in class,
• demonstrated in Scheme (the defining language),
• implemented as an extension of the defined language’s inter-

preter,
• exercised at the defining level (usage) and the defined level

(implementation).

Throughout the course, the students develop a series of interpreters
whose complexity gradually increases.

Figure 1 shows the definition and the implementation of a sim-
ple language2 that is demonstrated in the early stages of the course.
Since the students have experience only with eager languages, they
read this interpreter as the definition of an eager language, and they
translate this belief to the formal definition as well.

This provides a natural entry for a discussion of lazy evaluation,
and to explain that the evaluation rules for ‘with’ and for ‘call’
can be modified to operate in a lazy way,3 which will change the
defined language to a lazy one:

eval({with {x E1} E2}) → eval(E2[E1/x])
eval({call} E1 E1) → eval(Ef [E2/x]) if . . .

However, going back to the (apparently) eager version that was
defined and implemented, we can see (as noted by Reynolds) that
the defined language is eager only because our defining language is
eager, and that in fact the formal definition is non-deterministic in
this regard. Students have difficulty understanding this possibility,
and assume that the definition given could only be that of a strict
language.4

One possible approach is to make a quick detour and intro-
duce Haskell [9] — a language that is considerably different from
Scheme in both syntax and semantics. As mentioned above, we be-

1 CSU660, http://www.ccs.neu.edu/course/csu660/
2 This is Krishnamurthi’s ‘FWAE’ language. Curly braces are used in de-
fined languages to avoid confusing them with the defining language.
3 A little later in the course we discuss name capturing.
4 We imagine that students learning in Haskell would be similarly impaired,
although in the other direction.

lieve that this approach puts an additional burden on students, since
Haskell differ from Scheme on many fronts on top of its choice
of evaluation order. For a crowd of stronger students, this might
work, but we believe that for the average student, the simultaneous
changes may be distracting.

2.1 Our Solution: A Lazy Scheme
Before settling on a solution, we considered and discarded several
alternative approaches, including the following:

• Implement an interpreter which students use as their defining
language. This leads to a heavy performance hit, making it
impossible for students to run anything more than toy programs
in their interpreter.
• Have the students implement a lazy language, and then as-

sign exercises to be implemented in their defined language. The
main problem here is that students consider their defined lan-
guage as a toy, so they will dismiss such exercises as no more
than mere academic illustrations, and by association dismiss
lazy evaluation as such.
• Avoid introducing a lazy language, and instead demonstrate

some restricted laziness in the defining language. For example,
use Scheme’s ‘delay’ and ‘force’ to demonstrate some degree
of laziness. While practical, the explicit nature of the abstrac-
tion prevents a deep understanding of the differences between
lazy and eager evaluation.

We believe that actual programming experience is crucial for in-
ternalizing lazy programming. Switching languages makes it less
accessible, and the above approaches avoid making students expe-
rience lazy programming first-hand.

In short, we need a practical implementation of a lazy variant
of Scheme, which should be implemented as an extension of our
existing language. As we shall see in the following section, there
are several features that are unique to PLT Scheme which make it
possible to define a “new language” with different semantics, yet
have it be a well-behaved part of the same system. This means
that we get the environment support of DrScheme, as well as
functionality that exists in many libraries that are included in PLT
Scheme. The lazy language is implemented as a module, so existing
code that does not use this module is not affected. It is also possible
to use standard code from a lazy program and vice versa, under
certain conditions — procedures from normal Scheme modules
are treated as strict primitives in lazy code, and values from lazy
modules can contain delayed promises in strict code.

2.2 Examples
The Lazy Scheme language is bundled as a PLT package that
is used in the course. (The interested reader can install it from
http://csu660.barzilay.org/csu660.plt5.) Once the pack-
age is installed, DrScheme’s language selection dialog will have
a new “CSU660 Lazy Scheme” entry which makes the definitions
and interactions windows use the lazy language.

As a first example, we can enter some code and witness how
only the parts that are required by interaction output is executed. By
default, the Lazy Scheme language level uses DrScheme’s syntac-
tic coverage feature, which highlights code that is “touched” dur-
ing evaluation. Figure 2 shows a DrScheme screenshot that demon-
strates such an interaction6.

As this demonstrates, constructors of lists (‘cons’, ‘list’,
‘list*’) and of other objects are properly lazy in the new lan-
guage, and accessors are strict. This means that instead of dealing

5 Currently, this requires using version 209 of PLT Scheme.
6 Coverage is indicated by colors, underlines added here for printout clarity.



eval(N) → N

eval({+ E1 E2}) → eval(E1) + eval(E2)

eval({− E1 E2}) → eval(E1)− eval(E2)

eval({∗ E1 E2}) → eval(E1) ∗ eval(E2)

eval(Id) → error

eval({with {x E1} E2}) → eval(E2[eval(E1)/x])

eval(F ) → F (for a function expression F )

eval({call} E1 E1)
→ eval(Ef [eval(E2)/x]) if eval(E1) = {fun{x}Ef}
→ error otherwise

=⇒

;; eval : FWAE -> FWAE
;; Evaluates FWAE expressions by reducing them
;; to value expressions.
(define (eval expr)

(cases expr
[(Num n) expr]
[(Add l r) (fwae-add (eval l) (eval r))]
[(Sub l r) (fwae-sub (eval l) (eval r))]
[(Mul l r) (fwae-mul (eval l) (eval r))]
[(With bound-id named-expr bound-body)
(eval (subst bound-body

bound-id
(Num (eval named-expr))))]

[(Id v) (error ’eval "free identifier: ~s" v)]
[(Fun bound-id bound-body) expr]
[(Call (Fun bound-id bound-body) arg-expr)
(eval (subst bound-body

bound-id
(eval arg-expr)))]

[(Call something arg-expr)
(error ’eval

"expected a function, got: ~s"
something)]))

Figure 1. Definition and implementation of a simple language

Figure 2. Demonstrating syntactic coverage in Lazy Scheme

(define nats (cons 1 (map add1 nats)))
(define (divides? n m)

(zero? (modulo m n)))
(define (sift n l)

(filter (lambda (x) (not (divides? n x))) l))
(define (sieve l)

(cons (car l) (sieve (sift (car l) (cdr l)))))
(define (n-primes n) (take n (sieve (cdr nats))))

Figure 3. Using infinite lists in lazy Scheme

with special names for operations on streams [1, 2], we use known
Scheme names: the language is the same, only the evaluation order
changed. The code in Figure 3 demonstrates using infinite lists in
plain Scheme syntax.

Finally, we can get back to Reynolds’ observation, which is
demonstrated effectively using our Lazy Scheme. Almost any of
the interpreters that are implemented throughout the course, e.g.,
the code in Figure 1, can be used as is in the Lazy Scheme con-
text to yield a lazy evaluator. Re-examining the code in Figure 1,
reveals that there is a little more than plain Scheme to our inter-
preter. The ‘cases’ expression is a syntactic extension that is used

throughout the course, together with a new ‘define-type’ dec-
laration. ‘define-type’ is used to define a type which is a dis-
joint union of a few record variants, and ‘cases’ checks the type of
its input and deconstruct it by pattern-matching. Together, they are
roughly equivalent to using types in a statically typed (functional)
language like ML. This functionality is implemented by some non-
trivial syntactic code. It is essential to the coursework, so it must
be present in the Lazy Scheme language as well; which is easily
achieved by using the same code in the two contexts. This confirms
the usability of the lazy language, since it is used with code that
implement our teaching framework.

Figure 4 shows a more sophisticated evaluator. Once again,
this code is valid in both languages, yielding an eager or a lazy
evaluator.

3. Implementing a Lazy Scheme
Our lazy language implementation relies heavily on PLT Scheme’s
module system [7]. This system provides a robust way of defining
modules that export both standard functionality and syntax trans-
formations. The core of the lazy language delays all function appli-
cations, and forces arguments to strict functions — this is a known
solution to the off-by-one problem that naive stream implementa-
tions suffer from (our solution is similar to even-style streams [13]).
This is implemented by the following transformation:

(f x ...)
-> (∼ (let ([f (! f)])

(if (lazy? f) (f x ...) (f (! x) ...))))

where ‘∼’ is ‘delay’ and ‘!’ is ‘force’ iterated as many times as
necessary to get a value. The rationale behind iterating ‘force’ is
that we avoid complex bookkeeping (e.g., SRFI-40 [2]) by treating
all promises as delayed expressions. Actually, the Scheme Report
mentions treating promises as the values they encapsulate as a
viable implementation strategy [10, Section 6.4]: “It may be the
case that there is no means by which a promise can be operationally
distinguished from its forced value”.

The principle is therefore simple; PLT Scheme has a combina-
tion of powerful features that makes it possible to implement this
lazy language in a way that cooperates with the environment, so
that strict and lazy code can be combined via the module system.



(define-type FLANG
[Num (n number?)]
[Add (lhs FLANG?) (rhs FLANG?)]
[Sub (lhs FLANG?) (rhs FLANG?)]
[Mul (lhs FLANG?) (rhs FLANG?)]
[Div (lhs FLANG?) (rhs FLANG?)]
[Id (name symbol?)]
[With (name symbol?) (named FLANG?) (body FLANG?)]
[Fun (name symbol?) (body FLANG?)]
[Call (fun-expr FLANG?) (arg-expr FLANG?)])

;; eval : FLANG env -> VAL
;; evaluates FLANG expressions by reducing them to values
(define (eval expr env)

(cases expr
[(Num n) (NumV n)]
[(Add l r) (arith-op + (eval l env) (eval r env))]
[(Sub l r) (arith-op - (eval l env) (eval r env))]
[(Mul l r) (arith-op * (eval l env) (eval r env))]
[(Div l r) (arith-op / (eval l env) (eval r env))]
[(With bound-id named-expr bound-body)
(eval bound-body

(Extend bound-id (eval named-expr env) env))]
[(Id v) (lookup v env)]
[(Fun bound-id bound-body)
(FunV (lambda (arg-val)

(eval bound-body
(Extend bound-id arg-val env))))]

[(Call fun-expr arg-expr)
(let ([fval (eval fun-expr env)])

(cases fval
[(FunV proc) (proc (eval arg-expr env))]
[else (error ’eval

"expected a function, got: ∼s"
fval)]))]))

Figure 4. Parts of an evaluator code that can be used as is in both
strict and lazy Scheme

The following is a list of these features and how they contribute to
the implementation. The MzScheme language manual [6] describes
these features in detail.

Primitive application syntax: The transformation that we use is
needed for all function application forms. In most Scheme im-
plementations, this requires implementing a code-walker that
can identify and ignore special forms and macros and is able to
deal with code that is generated by macros.
In PLT Scheme, however, all function applications are first ex-
panded as uses of the special ‘#%app’ syntax [6, Section 12.5].
Furthermore, it is possible to create a new ‘language module’
that can provide its own version of Scheme primitives, includ-
ing the ‘#%app’ syntax. Our lazy language module uses this
to implement the transformation of application forms. Figure 5
shows the relevant part of the (simplified) code that imple-
ments the new ‘#%app’ as well as a new ‘apply’ function (the
‘provide’ form is in charge of exporting a ‘mzscheme’-like
language, except for new versions of ‘#%app’ and ‘apply’).
Note also that ‘!’ is a function in the strict implementation,
but it must be treated as a special form when it is used in the
resulting lazy language or it will get delayed like other functions
— strictness in a lazy language must be a special form [4].

Applicable records: For the implementation of our transforma-
tion we need to determine when a function is lazy. Obviously,
known built-in constructors like ‘cons’ and ‘list’ are lazy, and
non-constructor primitives are strict. But we cannot assume that
all non-built-in functions are lazy or we would not be able to use
Scheme functions from conventional modules imported as strict
functionality.
The solution exercises PLT Scheme’s ability to define new
record types (‘structs’) that can be applied as functions. This

(module lazy mzscheme
(define-syntax (∼app stx)

(syntax-case stx (!)
;; do not treat this as normal applications
[(_ ! x) (syntax/loc stx (! x))]
[(_ f x ...)
(with-syntax

([(y ...) (generate-temporaries #’(x ...))])
(∼ (let ([p (! f)] [y x] ...)

(if (lazy? p) (p y ...) (p (! y) ...)))))]))
(define (∼apply f . xs)

(let ([f (! f)] [xs (!list (apply list* xs))])
(apply f (if (lazy? f) xs (map ! xs)))))

(provide (all-from-except mzscheme #%app apply)
(rename ∼app #%app)
(rename ∼apply apply)))

Figure 5. Implementing lazy function applications

can be used to annotate function values with source code, doc-
umentation, etc. We redefine ‘lambda’ so it generates such
tagged functions, making it possible to know when a function
value was generated by lazy code. Checking for lazy functions
is now simple: those that are tagged as lazy cover user-defined
code and built-in constructors (which are re-provided as tagged
values), record constructors are also considered lazy. All other
functions are strict.

Technicalities: There are a few user-interaction technicalities that
are specific for PLT Scheme. For example, setting a custom
printer that forces (nested) evaluation results rather than have
users force values they want to see.

Module system and syntax transformers: Finally, it is worth re-
peating that the resulting module cooperates with the rest of
PLT Scheme — bindings from the two languages are not con-
fused, and programs can be made of modules of both kinds
without problems; many DrScheme tools “just work”. Specif-
ically, separate compilation works as expected even when mod-
ules are developed separately and later combined as parts of a
single application. This is a good demonstration of the power of
the PLT Scheme module system [7].

4. Conclusion
Our work demonstrates two things. First, that PLT Scheme’s syntax
and module systems make it possible to add such fundamental
features as laziness to an existing language in a transparent and
high-level way. Second, that such an extension has the crucial
advantage that it inherits a wealth of libraries and environment
tools.

As a result of these developments, it is now possible to show
students in a programming languages course the difference between
strict and lazy languages in isolation. That is, students can compare
strict and lazy evaluations of the same program text. Furthermore,
they can do so without giving up existing libraries, or their current
set of tools.
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