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This is the standard place to thank my wife, and apologize for making her life such a mess. I’m no
exception: I thank Regina for being. Infinity should be her reward:

λx.xx
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My native language is Hebrew, which is sexist by default (using male as default). English is a bit better
(like the word “user” having no sex), but still, there is no sex-less form for ‘he’, ‘his’ etc. I’ve decided
against using long combinations like ‘his/hers’ or the provocatively distractive form ‘hers’ — I simply use
male as default. The intelligent reader can transform all these to female form if he (she!) wishes.

Have lots of fun,
Eli Barzilay:
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Abstract

This work addresses the problem of providing a computer-based environment
to support the music composition process. One of the prominent aspects of
the composition process is the importance of structure: for a composer, a
music piece is more than its flat score; it is a structured object, and its
structure captures the expressive intention of the composer.

Existing music editors do not provide appropriate support for compo-
sition: most only address the score editing process, but more profoundly,
because there is no uniform or conventional way to denote structure in music
pieces, it has been unclear what information a structural editor for music
should manipulate. Given this state of affair, composers must remember or
add personal annotations to their compositions to remember their structure.
As a result, the editor cannot provide support for the manipulation of the
music piece as a structured and meaningful object.

This thesis presents the BOOMS editor intended for music composition.
BOOMS supports a combination of structural and non-structural editing
of music pieces and demonstrates the added power provided by an explicit
representation of structure. The main focus of the work has been on:

• Developing a methodology to combine structural editing in non-structural
editors;

• Investigating how abstraction mechanisms can help to turn an editing
session into a reusable function, which captures the intention of the
composer;

• Formally comparing direct abstraction on the music pieces being edited
and abstraction on the history of the commands the composer used to
build a piece.

The BOOMS system was developed as a general application framework for
developing editors with support for a combination of structural and regular
editing and support for end-user abstraction as a tool to define reusable
functions without programming. The framework is implemented in CLOS
(the Common Lisp Object System) and features a sophisticated Windows
interface. Instantiating the framework to a specific editing domain is a simple
task, due to the clean object-oriented design of the framework.

While the BOOMS framework is generic, it is most effective when instan-
tiated to domains similar to music composition, where a user incrementally
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builds a structured object by using a restricted set of commands to combine
smaller units into larger ones. The BOOMS framework was instantiated to
three domains to illustrate the support an abstraction-enabled structural ed-
itor can provide to end users: music composition, arithmetic expressions and
editing in a micro-world of colored cubes (GCalc).

In a BOOMS instantiated editor, the end-user interacts with the actual
piece being created using simple editor commands. At the same time, a view
of the editing session (as an editing graph) is maintained by the editor. The
editing graph can be edited by the user to specify his intentions. Abstraction
can also be performed on the editing graph, turning a sequence of editing
operations into a new reusable function, that can be used either in the simple
editor view or in the structural editing graph view.

A feature of the BOOMS framework is that it defines a place where
domain-specific knowledge can be introduced in an editor: the node con-
structors for the domain and the operators for each type in the domain can
be encapsulated in well-defined domain libraries and easily integrated in the
BOOMS framework. In particular, the BOOMS music domain editor in-
corporates well-defined knowledge of music notes, intervals, and arithmetics
over them. It is a promising area of future work to extend this package to a
more comprehensive music knowledge base.
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Chapter 1

Introduction

This work deals with the problems arising when developing computer music
environments to support music composition. It investigates the general issues
of hierarchical editing and abstraction as an end-user programming technique
within the context of a music editor.

The main motivation of the work is that existing music editors are too lim-
ited in scope and functionality to effectively support the composition process.
The limits derive from two factors: (1) Most music editors so far have been
restricted to score editing and therefore only the result of the composition
process is stored and represented, but the structure of the piece, the history
of its creation and its motivation is lost. (2) No conventional notation has
been accepted within the music community to denote the structure of music
pieces. The only “universal” notation for music is the flat score encoded in
the common music notation. Therefore there is no accepted way to make-up
for the lack of structure support in a score editor by adding mark-up tags
within the flat score, as is done in text editors.

Accordingly, the objective of this work is to provide a notation to encode
structure in music pieces that can be easily used in a direct-manipulation
editor. With this objective, the work has evolved into a general investigation
of hierarchical editing and the services a hierarchical editor can provide.

The contributions of the thesis are the development of an application
framework for hierarchical editors (the BOOMS system), the definition of a
general methodology to combine a domain specific editor with hierarchical
editing (through the notion of editing graphs and historical editing) and the
study of how hierarchical editing facilitates end-user programming through
the use of abstraction on editing graphs.

1
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This generic framework has been applied to create an innovative music
editor combining hierarchical and flat-form editing and supporting an in-
tuitive form of abstraction definition. The prototype editor is a promising
platform to investigate ways to introduce rich music knowledge within music
editors.

1.1 The Hierarchy Aspect in Music

Hierarchical structuring is inherent to music conception. As an acoustic phe-
nomenon, music is a stream of sounds, but it is never conceived as such.
Hierarchy is central to any music activity — listening, analysis, composition,
tutoring, performance, typesetting and computer processing. In listening,
the natural structuring performed in the listener’s mind, plays a major role
in the generation of music expectations [1]. In analysis, a major subject in-
volves structuring of a music piece along multiple dimensions and analyzing
the inter-relationships between such simultaneous structurings in harmony,
rhythm, melody and dynamics [2, 3, 4, 5]. In composition, hierarchy has a
major role in the actual construction of a piece: abstraction and generaliza-
tion in the bottom-up direction, and instantiation in the top-down direction
are essential composition approaches [6].

The need for hierarchy and structuring in the design and application of
computer music tools is intimately interlaced in the short history of computer
music [7, 8, 9, 10, 11, 12, 13, 14, 15]. Typesetting has a hierarchical aspect
as well [16]. In the design of low level protocols like MIDI [17] and Zippy [18]
the need for structure is frequently mentioned.

The work on Music Structures that motivated the BOOMS project con-
centrates on characterization of the ontology of structured music pieces as a
semantic domain for a computer music environment. It suggests the view of
a music piece as a temporal structure whose components are nested temporal
structures — SMP (Structured Music Piece). The hierarchical construction
starts from some primitive layer, that includes sounds (defined by attributes
such as pitch or timbre) or atomic motives. The multiple structuring of a
single piece gives rise to multiple SMPs, all sharing a single flat music piece

that acts as their extensional normal form.

The structure of an SMP can be syntactically specified by various con-
struction operators. The basic [direct] operator is general music-concatenation,
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denoted “@”. The expression

@(MP0, t,MP)

denotes the extension of the music piece denoted by MP, with MP0, played
at time t, relative to MP’s beginning. Two useful special case operators are
simultaneous and sequential concatenations, which are roughly defined
as:

Simultaneous: A | B = @(B, start(A), A)

Sequential: A − B = @(B, end(A), A)

Examples of other useful operators are transpose, reverse, stretch, and
merge.

In a Computer Music Environment based on the Music Structures view,
the operators are the construction means (value constructors). They express
the compositional intention of the user. Hence, the history of an editing ses-
sion evaluates to the intended composition, and provides the logical structure
of the composition.

1.2 Introducing “BOOMS”

BOOMS is a generic framework to study and develop sophisticated domain-
specific editors. The project is motivated by Computer-Music Environment
needs. The eventual goal of the project is to develop a music workstation sup-
porting multiple structured representations for a single music piece, following
the Music Structures representation of [12]. This has led to the development
of a hierarchical editor, that manipulates hierarchical music structures rather
than the flat music score: the first stage of BOOMS Object Oriented Music
Structures (abbreviated BOOMS).

The hierarchical structures in BOOMS are represented by an internal
DAG (Directed Acyclic Graph) data structure that contains node objects.
Leaves in this hierarchy stand for “atomic” music pieces (usually single
notes), and internal nodes are music constructors. Playing a piece amounts
to evaluating the structured hierarchy (the DAG) — calculating a flat value
which is the normal form of the structured music piece. All structured views
of a music piece share the same flat normal form (i.e., they sound identical).
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The hierarchical representation stands for the composer’s intentions, and
defines an ontological object (an actual music piece) implicitly: evaluation
must be used to retrieve this extension.

1.3 Thesis Plan

In an effort to uncover the potential of hierarchical editing to end-users, the
BOOMS editor was abstracted into a generic application framework for struc-
tural editing by untangling the editor part from the specific music knowledge.
The resulting framework is described in detail in Chapter6. It includes the
following layers:

1. Domain-independent node (constructor) management: the Node class.
These nodes compose the internal hierarchy data structure.

2. Graphic editor for hierarchy manipulations: the Icon class. This class
augments the Node class (using inheritance). The user manages objects
of this class that are visualized nodes.

3. On top of these two general layers, a package mechanism layer supports
implementation of multiple domains. This way, BOOMS can be used
for diverse hierarchical domains.

Three specific domains are implemented — a music domain, a colored
cubes graphical domain and an arithmetic domain.

A contribution of the work is the definition of a general methodology to
turn a domain-specific editor into a combined hierarchical-direct editor. The
approach is based on the view that each command performed by the user
in the native editor on domain values is recorded in an editing graph. In
the editing graph, each node corresponds to a user command and combines
domain values (the parameters of the command) into new complex values.
As the editing graph evolves, every argument is itself a node in the previous
state of the editing graph. The editing graph therefore encodes the history
of an editing session. This methodology is introduced in Chapter 3.

In structured domains like music composition, the editing graph corre-
sponds to the structure of the music piece being constructed. But because
the editing process can evolve in random ways, the editing graph can de-
velop into a tangled web. Because the structure of the music piece is of
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importance to the user (it captures his intention), the BOOMS approach al-
lows the composer to directly edit the graph. The BOOMS framework thus
fulfills two needs: it implicitly defines a language to describe the structure of
a music piece by mapping editor commands to structural constructors, and
it provides a direct manipulation tool for the resulting structural objects.
This is particularly important for music composition, because there is no
conventional way to denote structure for music pieces. The application of
the BOOMS methodology to different domains is discussed in Chapter 4.

In addition, the BOOMS editing approach, through the reification of
the editing process, allows non-programmers to turn editing sessions into
new operators. Because editing actions have been turned into objects (the
editing graph), it becomes natural to abstract a subgraph of the editing graph
into a new node constructor. This is an intuitive way to create user-defined
functions. This work presents an in-depth investigation of the abstraction
process enabling such definitions, and compares it with direct abstraction on
domain values which was proposed as an alternative technique for end-user
programming in [19]. This is discussed in Chapter 5.
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Chapter 2

Related Work

This work builds on different disciplines and fields. The main topics ad-
dressed are: computer music environments and composition environments;
the general editing process; abstraction and end-user programmability.

2.1 Computer Music Environments

In this section we investigate two music environment applications that are
both advanced and widely used: DMIX and Common Music.

DMIX

DMIX [13] is a system written by Danny Oppenheim in Smalltalk. The main
concept of DMIX is an expressive user-interface which operates in multiple
dimensions, including many visualization forms like box-graph, score, and
text representation. DMIX entails an extensive set of functions, some of
them are used via “slapping” — dragging one music piece and dropping on
another, performing some interaction between both.

The combination of multi-dimensional representation with slapping allows
for an interesting form of abstraction in the following way: a view can rep-
resent the pitch of a music piece, another view the rhythm of another piece;
by slapping (dropping) the pitch view on the rhythm view, one can obtain a
new music piece composed of these pitch and rhythm specifications. In this
operation, the rhythm dimension of the second piece has been abstracted
into a function that has been applied to the first piece.

7
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Although very impressive, DMIX has some disadvantages. First of all,
there is no formal model for DMIX. It was developed as a private tool by one
musician, and extended over time to a full application. Comparing DMIX
with BOOMS reveals two additional points where BOOMS provides features
that are necessary in such music environments:

• There is no hierarchy information in any form (applying an operation on
a music piece yields a new one that has no connection to the original).

• Abstraction is limited to slappability, i.e., one can only abstract a sin-
gle dimension for which a view already exists in the system — new
views cannot be created by end-users, and slappable views cannot be
combined. End-user programmability or extensibility is therefore im-
possible.

Common Music

Common Music [20] is a Common Lisp-based system written by Rick Taube.
Comparing Common music to other computer-music tools is similar to com-
paring Common Lisp to other programming languages. Common Music pro-
vides a very rich set of of music primitives and types to support algorithmic
composition. Many useful features are implemented like streams, containers
and algorithmic music.

Compared to other computer-music applications, Common Music is more
programmer-oriented than most applications, however, it is attractive enough
to make musicians learn how to use it (a surprising point is that musicians
actually spend time to learn how infinite streams are used). The containers
feature of Common Music supports hierarchy in compositions, however, this
is similar to nested procedures: the non-trivial management of containers and
the overhead involved prevents using this feature for constructing music like
nodes are used in BOOMS (no Common Music user will ever use a container
for three notes).

Common Music is very close to Common Lisp, so features like abstractions
are handled using Lisp. Another effect of this is the system being very
complex, for example, many macros are used all over (working without the
reference manual is an impossible task for many users). This approach makes
the usage of advanced features like abstractions not applicable for novice
users. There is a graphical user interface implemented (Stella), but it is only
partial in the sense that many features are not accessible through it.
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The Common Music system demonstrates the need for programmability
in composition environments. One of the most interesting features of the
system is the pervasive use of streams. BOOMS is different from Common
Music by emphasizing hierarchical structure usage and making abstraction
an intuitive mechanism to support end-user programmability.

2.2 Historical Editing and Structural Editing

The Programmer’s Apprentice

The objective of the Programmer’s Apprentice project [21] is to study how
a knowledge-based editor can help automate the tasks of program writing,
modification and documentation. One of the main themes of the research is
that the editor must encode explicitly more information than is written in
the text of the program in order to appropriately assist the programmer. In
the KBEmacs prototype, this additional knowledge is encoded in the form
of clichés. A cliché encodes the knowledge shared by the programmer and
an external assistant when modifying a piece of code. The following example
shows a cliché defined for enumerating a Lisp list:

(DEFINE-PLAN CDR-ENUMERATION

(PRIMARY-ROLES (LIST)

DESCRIBED-ROLES (LIST)

COMMENT "enumerates the elements of {the list}")

(LET* ((LIST {the input list}))

(LOOP

(IF ({NULL, the empty} LIST) (RETURN))

{({CAR, the current} LIST), the output element}

(SETQ LIST ({CDR, the rest} LIST)))))

Definitions of clichés include a body over which parameters are abstracted
and, most importantly, a set of annotations that explicitly describe the roles
of parameters and constraints over their instantiation. In the above exam-
ple, the methods to test if a generalized list is empty is abstracted to the
annotation {NULL, the empty}, comment annotations are also introduced
which are later used to automatically generate documentation for the code.
Other annotations can be used to introduce constraints on parameters.

This knowledge is used by the editor to provide the following function-
ality: during program synthesis, the programmer can select a cliché from
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a library and instantiate it using explicit editor commands. The program-
mer can alternatively enter code directly and an analyzer parses the code to
recognize instances of existing clichés. In both cases, the editor maintains
an explicit representation of the cliché structure of the code — called the
program plan — in addition to the program text. Because the program plan
is explicitly maintained, the KBEmacs editor can support modification of
the program at a much higher level of abstraction than a character based
editor can. Beyond parse tree editing (as provided by syntactic editors),
KBEmacs claims to support editing at the level of “algorithmic structure”.
This translates into sophisticated support for program modification: if a
programmer decides to switch a CDR-enumeration through a list into an
ARRAY-enumeration, the editor can transpose automatically the instances
of the CDR-enumeration, and propagate this change to all relevant occur-
rences.

The Programmer’s Apprentice project illustrates the need to maintain ex-
tra information in addition to the flat domain values being edited, to describe
the intention of the designer. The need for such meta-editing knowledge is
made even more pressing in the domain of music composition, because of the
lack of established mark-up standards in music notation.

In KBEmacs, the integration of the domain value editing and knowledge
editing is through a stage of automatic analysis and plan recognition of the
user actions. While this approach is conceivable in the programming domain,
where a large cliché library can be designed building on extensive results in
software engineering and programming language semantics, it is much harder
to apply in the music domain, where even a notation for structure is missing,
and the notion of “composer intention” is much harder to grasp. In addition,
music creators often consciously seek ambiguity in their composition, and a
plan recognition mechanism would perform poorly in such conditions.

The alternative approach implemented in BOOMS, is to provide explicit
editing of the editing graph, to empower the composer with the possibility
to specify his intention. Automatic analysis of the editing actions is beyond
the scope of this work.

Besides this difference, in BOOMS as in KBEmacs, the ideal place to
introduce domain specific knowledge to introduce sophisticated services in
the editor is in the set of editor commands. The BOOMS music knowledge
base is encapsulated in a library of editor commands, appearing to the user
in a palette, and plays a role parallel to KBEmacs’s cliché library.
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Chimera

In the Chimera graphical editor [22], Kurlander investigated ways to auto-
mate repetitive tasks in user interfaces. The Chimera system is built using
demonstrational techniques — empowering users to “program an application
through its user interface.” Kurlander developed five powerful techniques
to automate repetitions. Most relevant to this work are the techniques of
editable graphical histories and macros by example built on top of them.

Graphical histories encode in a comic strip metaphor the commands used
in an editing session: “Commands are distributed over a set of panels that
show the graphical state of the interface changing over time. These histories
use the same visual language as the interface” ([22, p.11]). The graphical
history is automatically maintained as the user performs actions on the edi-
tor. Strategies are designed to make histories shorter and focus on significant
actions in the system. Declarative rules encoding regular expressions of com-
mands are used to analyze the stream of commands issued by the user and
coalesce similar commands into a single pane of the history.

Histories serve as a basis for a sophisticated form of undo-redo where
the user can select which section in the history to undo or redo, and have
the editor propagate changes through the rest of the session as required. In
addition, histories are used as the basis for a form of abstraction implemented
in the graphical macro by example technique of Chimera. The main concept
is to abstract histories into functions by generalizing some of the objects
manipulated in a sub-session. The abstracted sub-session is then named and
can be used as a new command.

The BOOMS approach is heavily influenced by Kurlander’s work, in its
focus over histories (which are called editing graphs above). The main dif-
ference in approach is that Chimera depicts histories in the same visual lan-
guage as the object editor, while BOOMS depicts them in a hierarchical
view, focusing on their structural properties. The latter approach is a design
decision motivated by the need to denote structure in music composition. In
BOOMS, the differences between the properties of the editing graph and the
values being edited is also investigated formally.
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2.3 Abstraction and End-user Programmabil-

ity

Orlarey and others in [19] propose to build a music calculus based on pure
lambda calculus. To illustrate the use of abstraction, they develop an editor
in a micro-world of colored cubes, that can be combined around the three
dimensions. The main idea investigated in their system is to provide the user
with the possibility to abstract over the primitive values being edited. The
resulting domain includes both the colored cube values and the functions
obtained as a result of abstraction.

This system is discussed at length in Chapter 4, where a reimplementa-
tion is presented (the GCalc system), together with a formal analysis of the
domain and of the abstraction process. The BOOMS approach mainly differs
from the GCalc model in that abstracted functions are not part of the value
domain. This difference is parallel to that with the Chimera system — in
BOOMS, both editing graphs and abstracted functions are objects that the
composer wants to represent and manipulate. The BOOMS hierarchical view
provides a language to denote structure when no such formalism is generally
available in music.



Chapter 3

Hierarchical Editing —
BOOMS

In this chapter we introduce the notion of hierarchical and historical editing.
We show that editing sessions themselves, can be characterized as structured
expressions. Hierarchical editing is the manipulation of such structured ex-
pressions. It is contrasted to flat-form editing, where the result of the editor
operation is always fully evaluated: hierarchical editing is intensional, while
flat-form editing is extensional. At last, we introduce historical editing, as
a dual editing mode, where the user can manipulate both the flat-form of
his creation and edit directly the operational hierarchy of his editing ses-
sion. BOOMS supports a restricted form of historical editing that we call
“Constructive Historical Editing”.

3.1 Editing as a Structured Process

In this section, we develop the view of an editing session as a structured
process, represented by some hierarchical expression. This is enabled by
viewing an editor as generating a functional domain: an editor is always in
a state which is represented by a value (or values), and the user can perform
operations which bring the editor to other states. The values representing
the editor state are the functional domain values, and the user-operations
are functions on these values.

A simple example for an editor and a corresponding domain is a pocket-
calculator. It has a state which is composed of several number values — at

13
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least two numbers are needed for using the simple binary functions, and there
is usually some kind of a memory storage place. The arithmetic operations
are functions that operate on the calculator’s current values and set new
ones. These values and the user functions attached to the calculator keys
compose a functional domain.

We proceed to representing an editing session as an expression hierarchy.
This is immediate once having a functional representation for an editor do-
main, since functional expressions are naturally viewed as trees (e.g., syntax
trees). Given a set of values V (editor states) and a set of functions F (editor
operations), let H denote the set of hierarchical expressions over 〈V, F 〉. The
value of a hierarchical expression is given by a function Eval : H 7→ V that
evaluates expressions in H into the actual values in V — by applying the
corresponding functions in F .

Note that the tree representation of functional expressions is appropriate
when they are pure values. If hierarchy values are objects (with identity)
then the representation uses DAGs (Directed Acyclic Graph).

3.2 Editing Graphs are Intensional

Editing is an operation along time. An editor that keeps track of editing
operations along some period of time, and allow editing of the corresponding
operational hierarchy, is called a Historical Editor. Such an editor generates
a functional term for each operation. These terms preserve the history; their
evaluation yields the intended result. The generation of this hierarchical
expression is domain-independent. It is natural for a historical editor to have
two views: one for the original [extensional value] domain and support direct
manipulation, and another for the hierarchical expressions that represent the
processes that created these extensional values.

In this section, we first compare the domain of values manipulated in the
flat form editor (the original domain of values) and the values manipulated
in the historical editor. As discussed in Chapter 2, it is often claimed that
these two domains should be kept as close as possible, to allow the user
to manipulate histories in the same way as domain values. We develop a
formal analysis of editing graphs to precisely explain how editing graphs
differ from domain values. In the next section, we analyze a second reason
why the domain of editing graphs and the value domain differ: certain editing
commands are destructive, and leave no trace in the value being constructed.
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3.2.1 Intensionality and Hierarchy Editing

The critical difference between domain values and editing graphs is that the
later are intensional. Indeed, a historical editor enables direct manipulation
of the operational hierarchy. The BOOMS editor supports graphical DAGs
editing. This way, using subexpressions of the final creation is an inherent
feature; logical subunits of our creation can be directly referenced. Another
advantage is the support of multiple top-level hierarchies (multiple roots),
rather than a single value.

When editing, the handling of objects (values with identity) is more ap-
propriate than pure values. That is, object manipulation is descriptively
more powerful than manipulation of values. For example, the expression
“2 × 2” can use two different 2’s, or the same single 2 object. These two
options represent different intentions — like calculating the area of a 2-by-2
rectangle, or the area of a square with an edge length of 2. We also gain the
benefit of better evaluation times, since each node in the graph is evaluated
only once. This brings us closer to the expression graphs in [23].

In the intensional approach, the hierarchical operation expressions are
DAGs: nodes represent operations, and edges represent the relationship of a
subexpression node being an argument of a parent expression node. Manipu-
lating an acyclic graph rather than a tree means that subexpression-sharing
is allowed. Henceforth, the term “historical editing” is always used in its
intensional meaning (manipulation of objects).

3.2.2 Formal Description

To precisely explain the intensional nature of the historical editing domain,
we propose a formal description of the process of maintaining the editing
graph over a flat form editor.

The Functional Domain

The functional domain D = 〈V, F 〉 is a pair of the values set, and the func-
tions set, as follows:

• V is any set of values.

• F is a set of functions over V :
F ⊆ V n 7→ V
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The Hierarchical World

The definition of the hierarchical world W = 〈H,C, Eval〉, based on the
functional domain D, is a triplet of hierarchical values, constructor functions
and an evaluation function, as follows:

• C has a constructor function f̃ for each domain function f in F (n is
used as the function’s arity, f̃ has the same arity):
∀f ∈ F : ∃f̃ ∈ C :

f̃ : H 7→ H

∀x1, x2, . . . , xn ∈ H :
f̃(x1, x2, . . . , xn) = X ⇐⇒

X = f̃(y1, y2, . . . , yn) ∧ x1 = y1 ∧ x2 = y2 ∧ . . . ∧ xn = yn

• H is defined using primitive values V and augmented by the construc-
tors in C:

– V ⊆ H

– x1, x2, . . . , xn ∈ H, f̃ ∈ C =⇒ f̃(x1, x2, . . . , xn) ∈ H

– No other values are in H.

• The Eval function gives the semantic value of the syntax values in H:
Eval : H 7→ V

Eval(x) =







x if x ∈ V

f(Eval(x1), Eval(x2), . . . , Eval(xn))

if x = f̃(x1, x2, . . . , xn), f̃ ∈ C

3.3 The Editing Graph Preserves Destruc-

tive Operations

The general operation set of an editor can be categorized into two classes:

Constructive operations These are the usual operations — operations
that make us “advance toward the final goal”. Most of the ‘interesting’
operations fall in this category, they are ‘interesting’ because they add
information — they create explicit combinations: applying operator O

on states S1, . . . , Sn is simply O(S1, . . . , Sn) (a construction or a value).

There are many examples for constructive operations, they are usually
domain dependent because they construct values (or compute a value)
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specific to the domain of the values they operate on. Text writing /
pasting in a text editor and value entering / calculating on a calculator
are constructive operations.

Destructive operations These are operations that make the editor go back
to some previous values (or state) like the ‘undo’ operation, or produce
values that are not explicit combinations of previous ones, like the
‘delete’ operation.

Note that this usage of the term ‘destructive’ is different from its use
in programming languages — changing the internal state of an object.

These operations, contrasted to constructive operations, tend to be do-
main independent for reasons explained below. Examples of destructive
operations are deletion, undoing and resetting.

Surely, constructive operations should be recorded in the historical struc-
tures created by the editing session — otherwise we will not be able to
remember the way a value was produced.

On the other hand, destructive operations are used to recover previous
editing state / values, so we want this feature to be reflected in the corre-
sponding hierarchical values created. This means that destructive operations
are not implemented as constructors for hierarchy values, but as functions
that map hierarchy values to other hierarchy values — these can be consid-
ered as meta-level [destructive] operations for hierarchy maintenance.

There can be a situation where the user wants to keep the destructive
operations in the hierarchy — like when abstracting a sequence of operations
using their hierarchical form. Think of keyboard-macros in Emacs which
carry a similar kind of abstraction — it can be the sequence of ‘A’–DEL–‘B’,
which is exactly equal to ‘B’ (and the destructive information is redundant),
but it can be the sequence DEL–‘A’ where the destructive operation must be
part of the macro.

3.3.1 Example: Usage Scenario

This example demonstrates destructive operations. We use a different editor
domain — a text editor. Text is a stream of characters with no structure
and the operations used to create it define the operational history structure.
The only operations are concR for concatenating on the right, and ConcL on
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the left. The text string ‘ABC’ can be the result of

concR(concR(‘A’, ‘B’), ‘C’)

or
concL(concR(‘B’, ‘C’), ‘A’)

These two options for creating the ‘ABC’ text correspond to two possible ways
for a user to generate this text — typing ‘A’, ‘B’ and ‘C’, or typing ‘B’, ‘C’
and then ‘A’ at the beginning.

If this editor allows destructive operations like undo, we can have more
history expressions that generate this text, like:

concR(undo(concR(concR(‘A’, ‘B’), ‘D’)), ‘C’)

which happens when the user mistakingly enters ‘ABD’, then undoes the ‘D’
and finally adds the correct ‘C’.

3.3.2 Constructive Editing

The implementation of selective historical editing by using meta-level oper-
ations (partial evaluation of destructive editing operations) for destructive
operations is called Constructive Editing Approach. For example, in the
above text editor domain, when the user corrects the mistaken ‘D’ charac-
ter, we get a corresponding subexpression of the form undo(concR(X,Y )).
Such expressions can easily be identified and replaced by their simpler equiv-
alent form X — this simpler expression is the result of a meta-level delete
operation.

If the constructive editing approach is to be implemented in a hierarchical
editor, then the user should be given a way to say whether he wants such
automatic reductions or not, as there are cases (mentioned above) where the
destructive information should be kept.

Note: the BOOMS system does not handle editor domains that include
destructive operations. It allows, however, manual meta-level operations like
deletion on hierarchy structures.

3.4 Conclusion: Historical Editing

This chapter has developed a view of editing as a constructive process, where
the editor automatically maintains an editing graph reflecting the actions
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performed by the user on a flat form editor. This editing graph can then
be directly edited by the user. We have precisely highlighted the differences
between the domain of values manipulated by the flat form editor and those
manipulated by the history editor: editing graphs are intensional even when
the value domain is extensional, and editing graphs record destructive op-
erations, and, therefore, dealing with destructive operations in a historical
editor requires special care.

Hierarchical Editing of the operational history has the following advan-
tages:

• Can describe any history of editing, on any editor domain.

As we’ve seen — any editing session can be represented by an opera-
tional hierarchy, so we do not lose any editing power. The price can be
a loss in user-interface clarity for certain domains. This is discussed in
Chapter 4.

• Enable direct manipulation of the hierarchy using logical units of the
creation.

When representing the history hierarchy of a normal editing session,
we will probably get something which is of little use. The possibility of
working directly with the hierarchy allows the creation of expressions
that are more meaningful.

For example, using a text editor example, writing the string ‘ONE TWO’
in the obvious way (from left to right) creates the expression:

((((((‘O’ · ‘N’) · ‘E’) · ‘ ’) · ‘T’) · ‘W’) · ‘O’)

Hierarchical editing can produce a more meaningful representation:

((((‘O’ · ‘N’) · ‘E’) · ‘ ’) · ((‘T’ · ‘W’) · ‘O’))

The subexpressions ‘ONE’ and ‘TWO’, can be used elsewhere (using the
intensionality feature).

• The intensional nature enables simultaneous editing of multiple hierar-
chies (the hierarchy is a DAG with possible several roots). For example,
the calculator from the above example can have several memory cells.
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• The intensional visualization of the hierarchy editor enables direct ac-
cess to subexpressions, which encourages reusing of expressions. This
way a user can build true sharing of subexpressions, and distinguish
it from repetition, as in the above example of “2 × 2”. This distinc-
tion is meaningless in a flat editor, which always expands (computes)
its values. A historical editor recording the operational hierarchy of a
flat-editor, can, for example, use shared subexpressions using the copy
/ paste operations — remembering that the two subexpressions are ac-
tually the same one — and then enforce propagation of changes to its
two instances.

• The creation process can proceed in all possible design directions —
top-down, bottom-up and combinations.

Working bottom-up is obviously possible, this is what is created when
representing a ‘flat’ editing session (the possibility of holding multiple
unrelated expressions allows the building of low-level expressions, and
then higher expressions). Using unspecified arguments, it is also pos-
sible to start with the top level function expressions, working down to
more specific expressions — thus supporting top-down method. Any
combination of these methods, like starting from the middle level, down
to the bottom and then up to the top, is, of course, possible.

This is an obvious feature for any DAG editor, but here we have
achieved this advantage for any editor domain.



Chapter 4

The BOOMS Methodology on
Different Domains

The previous chapter focused on the notion of historical editing. In this
approach editing means manipulating the hierarchical structures created by
user operations. For example, as the user constructs the following music
piece:

the following editing graph is constructed:

Mi
Sol

Do
Re

...

×2

↓1

SEQ

SEQ

SEQ

21
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We also discussed the differences between the value domain (the score)
and the editing graph domain.

This chapter illustrates these differences in greater details by focusing on
three examples: simple arithmetics; a music composition domain; the colored
cube example introduced by Orlarey and others at the Grame computer-
music center in Lyon, France in [19].

These three samples demonstrates three different possible scenarii for an
editor implemented in BOOMS:

1. A native domain can have no structure at all. This is demonstrated by
the arithmetic sample, where the native values are numbers.

2. The native domain can have an intended structure that is not repre-
sented by the editing operation graph. This is the case of editing music
pieces using a flat editor: the usual way for entering a music piece is by
sequentially specifying its elements — the corresponding graph is not
meaningful, see page 19.

3. Finally, the structure of domain values can be described using a BNF,
and the editor commands correspond exactly to the non-terminals of
the BNF. This is the case of GCalc, where there are few ways to con-
struct a given cube. In this case the editing graph will be almost
isomorphic to the value being constructed. Still, the editing graph
of a value, and its structure can differ, since the editing graph is an
intensional DAG.

GCalc is the main example that is discussed in this chapter. The GCalc
editor is used as an example of a flat-form editor. GCalc was designed and
implemented for the purpose of “investigating radically new approaches to
end-user programming.” We reimplemented this system in Scheme to first
learn on ways to integrate abstraction in user interface and to precisely un-
derstand the differences between the BOOMS historical editing approach
and the GCalc “flat domain” approach. In this chapter, the GCalc domain
and editor operations are presented. Abstraction is postponed to the next
chapter, where it is confronted with the structure abstraction operation in
BOOMS.
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Example

We first illustrate the approach of viewing an editing session as a hierarchical
expression in the arithmetic domain1.

We take N as the functional domain, with the simple arithmetic functions:
{+,−,×}. The hierarchical world H is created, based on the functional
domain:

1. The set of values, V , is taken as the natural numbers, N. This is the
set of H’s primitive values: V = N ⊆ H.

2. For each f ∈ {+,−,×}, we create a binary constructor function (with
the same name) over H — these functions create new values in H.

3. The evaluation function maps values in H to values in V in the obvious
way.

We compare now the values in V (the original set of values), and the values
in H:

• The functional domain, V , contains only the natural numbers — N.
The result of applying a function on these values is another numeric
value, so the three applications “2 + 4”, “8 − 2” and “2 × 3” produce
the same value — “6”.

• H also contains the naturals as its primitive values, but now {+,−,×}
are value constructors. So, for example, “2 + 4”, “8 − 2”, “2 × 3” and
“6” are all different values.

• The evaluation method gives the intuitive mapping between H and V

— “Eval(2 − 4)”, “Eval(8 − 2)” and “Eval(2 × 2)” produce the same
result — “6”. (Writing Eval[[2 + 4]] might be more appropriate as the
values of H are actually syntax values).

This is similar to the expression graphs discussed in [23]. A graph can
be viewed as a hierarchy value, and graph reduction as an implementation
of an evaluation function (when producing a primitive-value result).

1This example is implemented in BOOMS as the ‘arithmetic’ demo package.
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Historical Editing and the Music Domain

Section 1.1 describes the world of Structured Music Pieces. This can be the
hierarchical representation of a ‘flat’ editor that manipulates music pieces as
note streams (similar to a textual editor handling character strings).

The Music Structures domain provides a natural example for editing as
a hierarchical expression. This is so because the main concatenation oper-
ators are true value constructors. A concatenation of two structured music
pieces evaluates to a new composed value, that explicitly includes the original
pieces. This holds also when concatenating flat music pieces, although the
resulting value is shallow-structured (concatenation of primitive elements).
The evaluation (using Eval) of a concatenated value yields a flat music piece
that explicitly contains the same primitive elements.

This is different from the status of values in the arithmetic example due
to the evaluation function. For example, the expression “2× 3” is evaluated
to the number “6”, and the original expression is lost.

4.1 GCalc Domain Description

The purpose of GCalc is to demonstrate how to build a programming lan-
guage on top of a structured world via abstraction and investigate abstrac-
tions as means for conceptualization. The GCalc domain is simple, structured
and can be supported by off-the-shelf graphic visualization tool. It is bet-
ter suited than a straightforward textual domain. The implementations are
simple but powerful, and can produce surprisingly complex results.

The data values of GCalc are colored cubes. An informal description
follows (a formal description is given in Section 4.3):

• There are primitive cubes which are uniformly colored with a single
color. These can be colored with any color, and a transparent color is
usually very handy.

• There are three ways of combining cubes to generate compound ones
— Left-Right, Top-Bottom and Front-Back. Each of these is a binary
constructor. The visualization of a compound cube is always a con-
struction of two cubes (using the constructor’s axis) of equal size —
that is, the two sub-cubes are shrunk in half to fit their part of the
compound cube.
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• There are definitions for an abstraction and an application operations.
This is the most important aspect of GCalc. It is discussed rigorously
later in Chapter 5 (Section 5.2).

Note that cubes in GCalc are data values and not objects. This means
that each cube value is unique, for example, there are no two different red
cubes. Cubes should be thought of as cube-concepts being conceptually
constructed, and not as physical cubes.

4.2 The GCalc Flat-Form Editor

The implementation of the GCalc editor is an example for a simple and
intuitive user-interface. It is a flat-form interface for the structured domain
of cubes. A brief description of the interface of the Scheme implementation
(which is similar to the Grame implementation) follows:

The workspace is divided into three panes2 — the work area, the primitive

colors palette and the storage. Each pane is a grid of cells. Almost all
operations are performed by drag-and-drop between the panes cells. Utility
operations like naming a cube, saving and loading, are not discussed (the full
documentation for the Scheme implementation can be found in Appendix C).

The Primitive Colors Palette

The grid of primitive colors palette contains cells with the primitive cubes. It
is used as a supply of basic cubes for dragging. An extra operation performed
on this pane is abstraction.

The Storage

The storage is a grid of empty cells that can be used for storing intermediate
results. Constructed objects can be dragged to and from the storage. This is
a necessity as construction is bottom-up (thus some way for saving objects
must exist or else operations can only be performed on the current cube and
a primitive cube).

2See page 28 for a screen snapshot
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The Work Area

The work area pane is the most important one — it is the application main
window. This is the place where the “current cube” is being worked on, the
place where all of the work is done. It is a grid of 3 × 3 cells as follows:

Back Top Apply (func)
Left Selected Right

Apply (arg) Bottom Front

Selected This is the selected cell that holds the cube the user is currently
working on. This cube can be dragged to any storage cell for later use,
and any cube from the storage pane or the primitive colors palette can
be dragged here for more editing.

Note that this cube can be dragged like any other cube, so it can also
be placed in one of the operation cells described below.

Left This is the cell that generates Left-Right constructions. When a cube
is dragged here, a Left-Right construction of this cube and the selected
cube is created and the result is placed in the selected cube.

Right This is the opposite cell for the “Left” cell, it will create a Left-Right
construction of the selected cube and the dragged cube (same as above,
but with the arguments swapped), and place the result in the selected
cube.

Top This creates a Top-Bottom cube, similar to the “Left” cell.

Bottom The opposite of “Top”.

Front This creates a Front-Back cube, similar to the “Left” cell.

Back The opposite of “Front”.

Apply (arg) / Apply (func) The Abstraction and Application are the
important operations of the GCalc system. They are discussed later,
but the user interface is briefly described here.

Creating an abstraction can be done only on a basic colored cube on
the primitive colors palette, by right-clicking on the color to abstract.
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Applying an abstraction is done by dragging an object to one of the
“Apply” cells: the “Apply (arg)” is for dropping argument values for a
function in the selected cell, and the “Apply (func)” is for dropping a
function to be applied on an argument in the selected cell.
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Session Sample

The session sample given here is taken from a running session of the Scheme
implementation. No abstractions are used in this sample.

The initial GCalc screen and floating windows

Dropping an initial yellow cube
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Dropping a red box on its left

Save the result and build the mirror-image object
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Saving this object as well, and put the two one
on top of the other

Save that, and finally: construct another
object and put it behind. View the final result

on the zoom pane.
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4.3 GCalc’s Formal Definition, Part I:

COLORS

The GCalc domain is formally defined in three parts. Part I is given here,
and Parts II–III that deal with abstractions, are described in Sections 5.2.1
and 5.2.3. The whole definition can be found in the documentation section
of the GCalc Scheme file.

The first part defines the simple colored cube ADT world — named
“COLORS”. These are the definitions for the values, and the similarity equiv-
alence relation which defines the visualization properties — similar objects
looks identical (although they may actually be composed differently), and
behave identically.

4.3.1 Values

The GCalc ontology (real-world elements) is the intended semantics behind
the syntax. This is defined first to motivate an intuitive approach to the rest
of the description. The ontology section contains the values and constructors
given here, and selectors that are defined in the next section.

1. C — an infinite set of colors and color constructs and a special “undef”
value which is an absorbing value for all functions.

2. B — a non-empty subset of C,
the subset of primitive basic elements (color concepts).

3. Cons — a set of constructors which are functions C × C 7→ C − B

defined by:
Cons = {LeftRight, TopBottom, FrontBack}
∀F ∈ Cons : F is a strict constructor:
∀x1, x2 ∈ C :

x1, x2 ∈ C − {undef} =⇒
F (x1, x2) = X ⇐⇒ X = F (y1, y2) ∧ x1 = y1 ∧ x2 = y2

x1 = undef ∨ x2 = undef =⇒
F (x1, x2) = undef

4. C is composed of its basic core B, and extended by the constructors in
Cons:
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(a) undef ∈ C

(b) c ∈ B =⇒ c ∈ C

(c) c1, c2 ∈ C,F ∈ Cons =⇒ F (c1, c2) ∈ C

(d) No other values are in C

4.3.2 Selectors

Six selectors are defined — two for each constructor. For example, the first
selector defined for a LeftRight construction is LeftPart:
LeftPart : C 7→ C

LeftPart(c) =































x if c = LeftRight(x, y)
TopBottom(LeftPart(x), LeftPart(y))

if c = TopBottom(x, y)
FrontBack(LeftPart(x), LeftPart(y))

if c = FrontBack(x, y)
undef if c ∈ B or c = undef

This should be done for all six selectors. The process is generalized by
two selector generators — higher order functions Select1 and Select2 defined
as follows:
Select1, Select2 : Cons 7→ (C 7→ C ∪ {undef})
∀F ∈ Cons, c ∈ C :

Select1(F )(c) =















x if c = G(x, y) ∧ F = G

G(Select1(F )(x), Select1(F )(y))
if c = G(x, y) ∧ F 6= G

undef if c = undef ∨ c ∈ B

Select2(F )(c) =















y if c = G(x, y) ∧ F = G

G(Select2(F )(x), Select2(F )(y))
if c = G(x, y) ∧ F 6= G

undef if c = undef ∨ c ∈ B

Call this property: Distribution of the selectors over the constructors in
Cons.

Naming convention — if the above F ’s name is AaaBbb, then we use
these names for the selectors:

• Select1(AaaBbb) — AaaPart

• Select2(AaaBbb) — BbbPart
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so the six selectors we have now are: LeftPart, RightPart, TopPart, BottomPart,
FrontPart and BackPart.

Examples:

• TopPart(TopBottom(LeftRight(Red,Blue),
LeftRight(Blue,Red))) =

LeftRight(Red,Blue)

• LeftPart(TopBottom(LeftRight(Red,Blue),
LeftRight(Blue,Red))) =

TopBottom(Red,Blue)

• LeftPart(TopBottom(LeftRight(Red,Blue),Green)) = undef

4.3.3 Similarity

The GCalc ontology is intensional in the sense that its values stands for
equivalence classes over a similarity relation (≈). This relation defines the vi-
sualization (“real-world” implementation) properties. As a general principle,
all values in the same similarity equivalence set will look identical (although
they may actually be composed differently), and behave identically for all
functional combinations. The intuition for this is the existence of values that
are built differently but look the same and are indistinguishable, like

TopBottom(LeftRight(X,Y ), LeftRight(Y,X))

and
LeftRight(TopBottom(X,Y ), TopBottom(Y,X))

Note, however, that “X” is not similar (and certainly not equal) to the
construction “LeftRight(X,X)”, so these two values are visualized differently.

The similarity equivalence relation ≈ is defined as follows:
≈ : C × C such that
≈ =
{〈b1, b2〉 ∈ B × B | b1 = b2} ∪
{〈c1, c2〉 ∈ (C − B) × (C − B) |

c1 = F (x, y) ∧
Select1(F )(c1) ≈ Select1(F )(c2) ∧
Select2(F )(c1) ≈ Select2(F )(c2)}

(Note that 〈undef, undef〉 6∈ ≈.)
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Examples:

• TopBottom(LeftRight(Red,Blue), LeftRight(Green,Yellow)) ≈
LeftRight(TopBottom(Red,Green),

TopBottom(Blue,Yellow))

• LeftRight(Red,Red) 6≈ Red

[ We can define an extensional ontology — in terms of equivalence classes
over the similarity relation and find a normal form for all values. This is not
done here since it is more complex, and we want this ontology to represent
the actual implementation. ]

4.3.4 Syntax

The GCalc syntax is a context free grammar, that is used to represent the
ontological values. We use capitals for syntactic categories and lower case
for terminals. The syntax is equivalent to the ontology, therefore no semantic
function is defined — it should be simple (e.g., the syntax “LeftRight(Red,Blue)”
means the result of applying the LeftRight constructor function on the Red

and Blue values).

1. COLOR −→ BASIC | COMPOSED

2. BASIC −→ ‘red’ | ‘green’ | ‘blue’ | ‘yellow’ | ‘white’ | ‘black’ | . . . |
‘transparent’

3. COMPOSED −→ ‘LeftRight’ ( COLOR , COLOR ) |
‘TopBottom’ ( COLOR , COLOR ) |
‘FrontBack’ ( COLOR , COLOR )

Note that different symbols derived from BASIC require different objects to
be contained in B, this restriction is implied by the semantics of GCalc. In
the Scheme implementation, the basic colored cubes are simply represented
by a number composed of three values for RGB, except for the transparent
cube which is represented by a symbol. So the above syntax is a somewhat
simplified version of the actual rule used:

BASIC −→ N | ‘transparent’
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4.4 Implementing GCalc in BOOMS

The GCalc domain is structured by a few primitive values and three binary
constructors. In BOOMS, the three binary constructor operations are im-
plemented as operation nodes and the basic colors as leaf nodes. For each
binary constructor, its dual operation (the right-left operation is the dual
operation of a left-right construction) is implemented by a node that applies
the constructor on its swapped arguments.

BOOMS is an intensional editor, which manipulates objects rather than
values. Hence, the implementation of GCalc as a package of BOOMS treats
cubes as objects — it allows two different red cubes. In this respect, the
BOOMS implementation differs from the flat-form GCalc editor. Obviously,
the BOOMS implementation of GCalc lacks the extensional user-interface.

When actually using the BOOMS hierarchy editor to play with cube ob-
jects, it is clear that this interface is better for organizing cube ideas and play-
ing with them, i.e., testing various possibilities. Nevertheless, it is equally
clear that the flat-form editor provides a more intuitive, direct user-interface.
The flat-form editor allows working in the domain while the hierarchy editor
forces a hierarchical abstraction on the creative process. The visual represen-
tation of nodes, is the only link between the BOOMS editor and the concrete
GCalc domain.
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4.4.1 Session Sample

The session sample given here is taken from a running session of the BOOMS
implementation. No abstractions are used in this sample. This example is
actually identical to the one in Page 28. Comparing the two sessions it is
clear that the flat-form native editor is much more intuitive.

Starting BOOMS — selecting a document
type to create

Dropping a yellow leaf constant from the
classes palette
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Building the right-left construction

The final object, viewed in the window that
pops on evaluation

Note that this working method naturally supports top-down construction
which is impossible in the flat-form editor.
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Chapter 5

Abstractions

Up to now we used only simple domains, all functions were built-in func-
tions defined in the domain of the editor. In this chapter we discuss user-
definable functions — abstractions. Two types of abstractions are discussed
— flat-form abstractions which are performed on a ‘flat’ value, and structure
abstractions which are performed on intensional hierarchy expressions.

5.1 Introducing Abstraction & Application

What are abstraction and application? A brief explanation is given here, for
an excellent introduction of this idea see [19].

Abstraction is an act of generalization which is done on two values, the
exact types of values used may vary, but usually we abstract a composed value
on some simple value. Conceptually, abstracting a composed value v on some
simple value x means “stripping off” the x property from v, creating some
general object — a function to be applied later. For example, abstracting the
red color from a red flower gives a generalized, colorless flower. Technically,
the result of such an abstraction, is the value v with each occurrence of x

replaced by a variable — a hole for later filling.
Application is the opposite operation — instantiating an abstraction. It

takes an abstraction and some appropriate value, and instantiates (replace)
the abstraction’s variable by the applied value. The obvious semantics for an
abstraction is a function, and application can be described as the result of
applying this function. For example, application of the above colorless flower
on a yellow color yields a yellow flower.

39
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5.1.1 The Power of Abstraction

In an editor, abstractions are usually very useful. In fact, some complex
objects have an explicit representation which is so complex, that abstractions
are necessary for an understandable description. Having abstractions in an
editor is powerful because it means we have the power of a programming
language. An example of the power one gets having an editor capable of
abstracting can be found in [22]. The abstraction and application operations
are simple enough that they can be merged into any domain (specifically —
any editor domain), this is one of the main ideas of [19] (demonstrated by
GCalc).

BOOMS implements flat-form and hierarchy abstractions. Flat-form ab-
straction is used to abstract some value which is a component of a flat-form
creation. Hierarchy abstraction is more like the keyboard macro facility in
Emacs — abstracting on the operational hierarchy means we record some op-
erations to be used on other values later. These abstractions are performed
on the operation DAG, so they can select the variable part of the abstraction
intensionally.

5.2 Flat-Form Abstractions

Flat-form abstraction is a direct implementation of lambda abstraction (see
[23, Chapter 2] for a description of lambda calculus). The flat values of the
domain are compositions of simple values; the composite values abstracted
on the simple values. This is done by replacing all occurrences of a simple
value in the composite one by a variable, producing an abstraction value.
Thus we need new objects: abstractions and variables.

Abstractions are created using a constructor that is given a variable and
an object, this means that we also need a function that will do the
actual replacement of the abstracted value by a variable.

Variables are an infinite set of values distinct from the domain values. This
set should be infinite since a new abstraction uses a new variable for
avoiding the problem of name capturing.

As an example, take the character concatenation domain from Section 3.3.1.
The flat-form domain is the strings domain, with values that are character
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concatenation. No hierarchy structure is used, the string ‘ABC’ is simply a
concatenation of ‘A’, ‘B’ and ‘C’. The value of ‘Twice’ in

Twice := Abstract(‘A’, ‘AA’)

is an abstraction (a function) that takes some value (a string value) as an
argument, and returns this value repeated twice:

Apply(Twice, ‘ABC’) = ‘ABCABC’

Abstraction is possible on another abstraction to create multiple argument
functions (the arguments are ‘processed’ one-by-one, this is called “Currying”
— [23, Section 2.1.1]):

ABBA := Abstract(‘B’, Abstract(‘A’, ‘ABBA’))

Apply(Apply(ABBA, ‘ABC’), ‘ABD’) = ‘ABDABCABCABD’

As seen in this example, the abstraction and application operations are sim-
ilar to search and replace operations performed separately, with the addition
of variables and scoping rules.

The final part of this discussion handles visualization of abstraction val-
ues. When writing an abstraction on paper it is easy to use something like

ABBA = λβ. λα. αββα

which is conventional. When visualizing such an object, the obvious (and
intuitive) way for visualizing this is using the domain operations with “vari-
able objects” placed in the abstracted value. The text example makes the
usage of special characters (‘α’ and ‘β’) a possible solution based on the
correspondence between simple values and variables (‘β’ replacing B). The
visualization method used in GCalc solves this by using a variable set that
have variables corresponding to simple values (and therefore can be visualize
as variations of such). A simple variable set V based on the simple value

domain N can be V = S × N, using this, and the representation ‘X’, ‘X’, . . .
as the variables corresponding to the character ‘X’, then we have the above
ABBA represented as:

ABBA = B.A. ‘ A B B A ’

(The initial variable declaration is still needed for identifying an abstraction
value as well as specifying the variables and their order.)
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5.2.1 GCalc’s Formal Definition, Part II:
FCOLORS

This is the functional extension for COLORS (compare with the first part
in Section 4.3). It extends the COLORS world with lambda abstraction and
application objects, and an Eval function which implements the reduction
rules. It contains various functions that are used for handling the lambda
calculus.

5.2.1.1 Values

1. C — is extended with abstraction and application values generated by
the new constructors and the variables defined below.

2. B — is the same as B in COLORS.

3. Vars = B ×N — is an infinite set of variables that derive from the set
B. This means that each variable is associated with some basic color
in B, this is because we want to keep the abstraction variable’s color
when visualizing it. We use a short form — Red0 instead of 〈Red, 0〉.
Equality of variables is defined as:
∀xi, yj ∈ Vars :

xi = yj ⇐⇒ x = y ∧ i = j

For example, Red0 and Red1 are two different variables which derive
from the Red color. In general we have infinitely many variables with
an attached color.

4. BV = B ∪ Vars — the set of simple (non composed) values.

5. Cons — is the same as in COLORS.

6. FCons — the two lambda-calculus constructors — a set of strict (see
Cons above) functions in C × C 7→ C − BV is defined by:
FCons = {Abstraction, Application}

These constructors are used by the Lambda and Apply functions de-
scribed below to generate Abstraction and Application values.

Note: the approach of having some value for an abstraction rather
then building a value was taken here because of the GCalc environment
which handles abstraction values like all other values.
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7. CCons = Cons ∪ FCons — the set of all constructors.

8. C is composed of its basic core B, and extended by the constructors in
CCons:

(a) undef ∈ C

(b) c ∈ BV =⇒ c ∈ C

(c) c1, c2 ∈ C,F ∈ CCons =⇒ F (c1, c2) ∈ C

(d) No other objects are in C

5.2.1.2 Selectors

All previous selectors are maintained. There is no distribution over the FCons

constructors. All COLORS selectors evaluate to undef for variables and
Abstraction / Application values:
Select1, Select2 : Cons 7→ (C 7→ C ∪ {undef})
∀F ∈ Cons, c ∈ C :

Select1(F )(c) =























x if c = G(x, y) ∧ F = G

G(Select1(F )(x), Select1(F )(y))
if c = G(x, y) ∧ F 6= G ∧ G ∈ Cons

undef if c = undef ∨ c ∈ BV ∨
(c = G(x, y) ∧ G ∈ FCons)

Select2(F )(c) =























y if c = G(x, y) ∧ F = G

G(Select2(F )(x), Select2(F )(y))
if c = G(x, y) ∧ F 6= G ∧ G ∈ Cons

undef if c = undef ∨ c ∈ BV ∨
(c = G(x, y) ∧ G ∈ FCons)

For example:

• LeftPart(Abstraction(Red0, LeftRight(Red0,Green))) = undef

5.2.1.3 User Ontology Functions

These functions are used to construct abstractions and perform applications.
The auxiliary functions used here are defined in the next section, this includes
the Eval function that defines the semantics of abstraction and application.
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1. Lambda function:
This function creates abstraction values (in analogy to lambda forms
that create closure values).

Lambda : B × C 7→ C

∀b ∈ B, c ∈ C :
Lambda(b, c) = Abstraction(bi, Replace(c, b, bi))

where bi ∈ Vars does not occur in c (that is, ¬Occur(c, bi) — we can
choose the minimal i).

For example:

• Lambda(Red, LeftRight(Red,Green)) =
Abstraction(Red0, LeftRight(Red0,Green))

[ See Occur and Replace function definitions below. ]

2. Apply function:

This function is a mere wrapper around the Eval function which eval-
uates applicable functions — does the beta-reductions.

Apply : C × C 7→ C

∀c1, c2 ∈ C :
Apply(c1, c2) = Eval(Application(c1, c2))

For example:

• Apply(Abstraction(Red0, LeftRight(Red0,Green)),Blue) =
Eval(Application(

Abstraction(Red0, LeftRight(Red0,Green)),
Blue)) =

LeftRight(Blue,Green)

• Apply(Red,Green) =
Application(Red,Green)

[ See the Eval definition below. ]

5.2.1.4 Auxiliary Functions

This section defines functions used for the ontology functions and the evalu-
ation semantic function.
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1. Occur function:

This function checks if its second argument occurs (is a sub value) of
the first argument.

Occur : C × BV 7→ Bool

∀c ∈ C, b ∈ BV :

Occur(c, b) =















True if c = b

Occur(c1, b) ∨ Occur(c2, b)
if c 6= b ∧ c = F (c1, c2) ∧ F ∈ CCons

False if c 6= b ∧ c ∈ BV

For example:

• Occur(Abstraction(Red0, LeftRight(Red0,Green)),Red) =
False

• Occur(Abstraction(Red0, LeftRight(Red0,Green)),Red1) =
False

• Occur(Abstraction(Red0, LeftRight(Red0,Green)),Red0) =
True

2. Replace function:

This function replaces all occurrences of the second argument in the
first argument by the third argument.

Replace : C × BV × C 7→ C

∀c ∈ C, b ∈ BV, x ∈ C :

Replace(c, b, x) =















x if c = b ⊳

F (Replace(c1, b, x), Replace(c2, b, x))
if c 6= x1 ∧ c = F (c1, c2) ∧ F ∈ CCons

c if c 6= x1 ∧ c ∈ BV

For example:

• Replace(LeftRight(Red0,Green),Red,Blue) =
LeftRight(Red0,Green)

• Replace(LeftRight(Red0,Green),Red0,Blue) =
LeftRight(Blue,Green)

• Replace(LeftRight(Red,Green),Red,Red0) =
LeftRight(Red0,Green)
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3. Eval function:

This function evaluates expressions. It is applied immediately on ap-
plication constructions, as implemented by the system. This can be
modified, however, for example to obtain a system with a functional
meaning to an application of a basic colored cube. It is defined using
an algorithm — the reduction rules algorithm:

Eval : C --> C

Function Eval(c)

if c in BV

return c

else if c = Abstraction(v_i,b)

return c

else if c = Application(c1,c2)

let x1 = Eval(c1), x2 = Eval(c2)

if x1 in BV or x1 = Application(y1,y2)

return Application(x1,x2)

else if x1 = Abstraction(v_i,b)

return Eval(Replace(b,v_i,x2))

else

return Application(x1,x2)

else

c is F(c1,c2) for some F in Cons

return F(Eval(c1),Eval(c2))

For example:

• Eval(LeftRight(Red,Green)) = LeftRight(Red,Green)

• Eval(Application(LeftRight(Red,Green),Red)) =
Application(LeftRight(Red,Green),Red)

• Eval(Application(
Abstraction(Red0, TopBottom(Red0,Green)),
Blue)) =

TopBottom(Blue,Green)
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5.2.1.5 Similarity

The FCOLORS similarity is an extension of the COLORS similarity. The
new similarities are:

• Variables are treated like B values.

• An Application value is similar to another Application with similar
components.

• An Abstraction value is similar to another Abstraction with variable
based on the same color, and similar body when using the same vari-
able. Note that this is not functional equivalence.

The new similarity equivalence relation ≈ is redefined as follows:
≈ : C × C such that
≈ =
{〈b1, b2〉 ∈ B × B | b1 = b2} ∪
{〈vi, vj〉 ∈ Vars × Vars | ui = vj} ∪
{〈c1, c2〉 ∈ (C − BV) × (C − BV) |

c1 = F (x, y) ∧ F ∈ Cons ∧
Select1(F )(c1) ≈ Select1(F )(c2) ∧
Select2(F )(c1) ≈ Select2(F )(c2)} ∪

{〈c1, c2〉 ∈ (C − BV) × (C − BV) |
c1 = Abstraction(ui, b1) ∧ c2 = Abstraction(vj, b2) ∧
ui, vj ∈ Vars ∧ u = v ∧
Replace(b1, ui, wk) ≈ Replace(b2, vj, wk) ∧

for some wk ∈ Vars such that
¬(Occur(b1, wk) ∨ Occur(b2, wk))} ∪

{〈c1, c2〉 ∈ (C − BV) × (C − BV) |
c1 = Application(x1, y1) ∧ c2 = Application(x2, y2) ∧
x1 ≈ x2 ∧ y1 ≈ y2}

For example:

• Application(LeftRight(Green,Red),
TopBottom(LeftRight(Red,Blue),

LeftRight(Green,Yellow))) ≈
Application(LeftRight(Green,Red),

LeftRight(TopBottom(Red,Green),
TopBottom(Blue,Yellow)))
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• Abstraction(Red0, Application(Red0,Green)) ≈
Abstraction(Red1, Application(Red1,Green))

5.2.1.6 Syntax

1. COLOR −→ BASIC | COMPOSED

2. BASIC −→ ‘red’ | ‘green’ | ‘blue’ | ‘yellow’ | ‘white’ | ‘black’ | . . . |
‘transparent’

3. COMPOSED −→ ‘LeftRight’ ( COLOR , COLOR ) |
‘TopBottom’ ( COLOR , COLOR ) |
‘FrontBack’ ( COLOR , COLOR ) |
‘Lambda’ ( BASIC , COLOR ) |
‘Apply’ ( COLOR , COLOR )

Note that Abstraction and Application are not included in the syntax —
Lambda and Apply are used instead.

5.2.2 Generalizing GCalc’s Abstractions

The flat-form abstraction defined for GCalc is generalized in two directions
— making it generally applicable for any editor domain and having the ab-
straction values (objects) behave like the editor domain native values.

Flat-form Abstractions for Any Domain

The GCalc flat-form abstractions demonstrate a powerful feature that can
be implemented in other domains as well. This is used in BOOMS for creat-
ing a general program interface that implements flat-form abstractions when
provided with simple search and replace operations (these operations depend
on the domain simple data values and compound values).

It is implemented in the arithmetic and the music packages, the arithmetic
implementation is awkward because the arithmetic expressions are used for
the abstraction, while the flat-form is actually a number. The GCalc package
is the only one with a visualization for abstractions, the other packages do
not implement a flat-form editor so there is no need for such visualization.
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Flat-Form Abstractions as Domain Native Values

The goal of having a functional domain on top of the native domain is
achieved by merging the functional objects into the domain: making them
behave like domain values. This is further emphasized by an obvious question
a user asks when playing with GCalc: “What will happen if I’ll attach two
abstractions?” An answer to this question specifies how abstraction values
interact with the host domain.

Merging flat-form abstractions into the domain is an inherently domain
dependent job — what needs to be specified is the semantic meaning to
constructions of abstraction values. The GCalc specification is natural: a
left-right construction of two functions is a function that when applied gives
the result that is a left-right construction of the left function on the left half
of the argument and the right function on the right half (this is defined in
Section 5.2.3 below).
The music and the arithmetic packages in BOOMS do not handle flat-form
abstraction constructions. This can be easily added to the music package,
following the guidelines of [19] — having a “Music Lambda Calculus” imple-
mentation.

5.2.3 GCalc’s Formal Definition, Part III:
GCALC

This is the final stage, where we have only the extension of FCOLORS to
handle functional meaning of constructions of functions.

All that is done here is adding the T-Selectors and the redefinition of
the Eval function to handle Applications of Abstraction constructions. The
intuition for this extended evaluation rules are activating part of the operator
on corresponding parts of the operand.

The Values, Ontology Functions, Similarity and Syntax versions are the
same as the FCOLORS definitions. They are part of this definition, but not
rewritten here.

5.2.3.1 Selectors

All FCOLORS selectors are also GCALC selectors. For each FCOLORS
selector Sel, there is a new GCALC selector TSel that gives the same results
as Sel except for BV values, which TSel returns the argument opposed to Sel
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which returns undef. The intuition is that these selectors will always return
the requested part, ‘splitting’ the argument when needed.

The TSelect1 and TSelect2 are higher order functions similar to Select1
and Select2:
TSelect1, TSelect2 : Cons 7→ (C 7→ C ∪ {undef})
∀F ∈ Cons, c ∈ C :

TSelect1(F )(c) =































x if c = G(x, y) ∧ F = G

G(TSelect1(F )(x), TSelect1(F )(y))
if c = G(x, y) ∧ F 6= G ∧ G ∈ Cons

c if c ∈ BV

undef if c = undef ∨
(c = G(x, y) ∧ G ∈ FCons)

TSelect2(F )(c) =































y if c = G(x, y) ∧ F = G

G(TSelect2(F )(x), TSelect2(F )(y))
if c = G(x, y) ∧ F 6= G ∧ G ∈ Cons

c if c ∈ BV

undef if c = undef ∨
(c = G(x, y) ∧ G ∈ FCons)

The names of the generated selectors are the same as those generated by
Select1 and Select2, prefixed with a “T”.
For example:

• LeftPart(TopBottom(LeftRight(A,B), LeftRight(C,D))) =
TopBottom(A,C)

• TLeftPart(TopBottom(LeftRight(A,B), LeftRight(C,D))) =
TopBottom(A,C)

• LeftPart(TopBottom(LeftRight(A,B), C)) = undef

• TLeftPart(TopBottom(LeftRight(A,B), C)) =
TopBottom(A,C)

5.2.3.2 Functions

Same as FCOLORS auxiliary functions, except that the Eval function is
redefined to handle applications of abstraction constructions.

• Eval function:
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This function evaluates expressions. It is defined using an algorithm
— the reduction rules algorithm:

Eval : C --> C

Function Eval(c)

if c in BV

return c

else if c = Abstraction(v_i,b)

return c

else if c = Application(c1,c2)

let x1 = Eval(c1), x2 = Eval(c2)

if x1 in BV or x1 = Application(y1,y2)

return Application(x1,x2)

else if x1 = Abstraction(v_i,b)

return Eval(Replace(b,v_i,x2))

else

x1 = F(s1,s2)

return

F( Eval(Application(s1,TSelect1(F)(x2))),

Eval(Application(s1,TSelect2(F)(x2))))

else

c is F(c1,c2) for some F in Cons

return F(Eval(c1),Eval(c2))

For example:

– Eval(Application(LeftRight(Red,Green),Red)) =
LeftRight(Application(Red,Red), Application(Green,Red))
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5.2.4 Session Sample

We have seen the object from
previous examples, call it “A”

It is now abstracted on the red
color, call this function “B”

This is the result of applying B

to A

And again — applying B to
the last result, name this “c”
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This is the identity function —
(λ(Y ) Y )

And this is a constant function
that will always return an
invisible cube — a “hole”

When this functional
composition is applied on an
object, its right half remains
the same, but the left one

disappears

This is the result of applying
this on C
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This one is called a “slicer”

And this is really nice!
(176 simple constructors should be

used to achieve this with no

abstractions)
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5.2.5 Flat-Form Abstractions in BOOMS

Flat-form abstraction is an intuitive operation, that can be conceived as
being part of the domain rather than being an operation performed on the
domain. Indeed, this is how flat-form abstractions are implemented in the
BOOMS environment. The two operations of abstraction and application
become part of the operational hierarchy, since they are treated as domain
operations.

5.3 Structure Abstractions

Using flat-form abstractions we can only abstract on the explicit form of the
value. For example, given the arithmetic hierarchical expression “2×3+2×4”
one cannot abstract only on the first or on the second “2” above, or on the
“2 × 3” subexpression. One must abstract on a primitive value, and the
abstraction applies to all occurrences of that value. Structure abstractions
can distinguish between occurrences of the abstracted value or be applied to
complex subexpressions.

A structure abstraction is an abstraction on a hierarchical intensional
expression. The process can be described roughly as selecting a subexpression
of an expression, and making it the abstraction variable. When such an
abstraction is applied on an expression argument, this expression is replaced
for the abstraction variable. Generally speaking, structure abstractions are
viewed as meta-operations, abstracting edit operations — providing similar
power to that of macro languages found in many modern applications.

Structure abstraction is like visually drawing a box around a pattern of
operator applications thereby turning it to a compound function. This means
we can still use the flat-form abstraction / application machinery for structure
abstraction, except for the equality test marked with a ‘⊳’ in the Replace
function definition on page 45 above. This should compare objects rather
than values (use eq instead of equal). For example, if the DAG representing
the expression “2 × 3 + 2 × 4” contains two different “2” leaf objects, then
each one can be abstracted alone. Another option is abstraction on the whole
“2 × 3” object: each subexpression is itself an object.

A formal definition of structural abstraction and application can be de-
fined similarly to the addition of flat-form abstraction on top of GCalc.
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5.3.1 Structure Abstraction in BOOMS

Structure abstraction can be implemented the same way as the flat-form
abstraction implementation — have an ‘Abstract’ and an ‘Apply’ operations
that are merged into the domain, becoming part of the operational hierarchy.
Implementing structure abstraction in the same way will be very simple, the
main change is using the Lisp ‘eq’ function instead of ‘equal’ ((eq x y) is
true only if x and y are the same object while equal is used to compare
values).

However, as already said, we view structure abstraction as meta-level op-
erations. This means we don’t have such operations in the domain, we rather
have these operations work on the hierarchical structure — the structure
abstraction mechanism is therefore different from the flat-form abstraction
implementation.

The most important difference is that a structure abstraction results in
a new operation type that can be used — this makes structure abstraction
a tool for creating user defined functions (that encapsulate a sub-session).
Since abstractions create new operation types, they are abstracted on any
number of variables at once. The abstraction object cannot be used for
further abstraction, i.e., Currying (the method used for multiple argument
flat-form abstraction) is impossible.

Another difference from flat-form abstraction appears when defining what
happens if we abstract on an object that has multiple occurrences of the
same object as arguments. Using the search operation with object equality
testing, we get a single variable that replaces all occurrences. Such behavior
is sometimes unwanted, since the intensional argument specification may be
expected to behave as if there are no subexpression repetition. The solution
to this problem is having a user option that specifies the desired behavior.
In any case, an identity node is provided to allow for both behaviors, this is
demonstrated by the following diagram:
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ID ID ID

B2 B3B1

A2 A3A1

1. The first abstraction, created by abstracting A1 alone, can have two
variables, for the two A1 arguments or one variable for the single B1

object. This should be resolved by the user option setting.

2. The second abstraction, created by abstracting A2 and ID, will always
have one argument — there is a single external link to a single object.

3. The third abstraction, created by abstracting A3 alone, will always
have two arguments — there are two external links to two different ID

objects.

Note: there is a limitation on the abstracted expression — its subgraph
may be connected to other nodes only as arguments to the subgraph leaves or
the root being an argument of other nodes. Other connections are prohibited
since abstractions are used for zooming out (replacing the subgraph by an
abstraction node), and there is no intuitive solution to visualizing such links.
See the next section for more details.

5.3.2 Hiding Details

Using a hierarchical editor, it is usually desired to have a way for “zooming
out” unwanted details. This means the user can hide parts of the hierar-
chy that are not currently relevant to the editing process. For example, a
composer might want to design the overall structure of a music piece after
creating all of its basic parts, or improving a basic music component that is
already placed in the global composition. This approach of zooming-out is
different from geometrical approaches, where the zooming is achieved using
graphical representation (for example — [24]).
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The essence of such a “zoom out” operation is similar to abstracting.
In both cases details are hidden — in the zoomed out expression, or in the
abstraction body. With this similarity in mind, the structure abstraction
mechanism was designed to provide also zooming-out capability. This is
achieved by allowing the creation of unnamed abstractions. In that case the
abstraction is immediately instantiated (a node is created), and it replaces
the original abstracted expression, hiding its details inside the abstraction
body. This eliminates the need for two separate mechanisms: the BOOMS
user interface does not mention any “zoom out” option, only unnamed ab-
stractions.
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5.3.3 Session Sample

From left to right:

1. This is from the previous example on page 4.4.1, we want to
abstract the selected icons (all but the bottom two).

2. The abstraction has been performed — this is the zoom-out
operation.

3. Now it is given a name — the name also appears on the classes
palette. This is learning a new user operation.

4. Finally, we apply this new node on black and transparent.

Mixing both abstraction methods can lead to confusing situations — like
Lambda(Red.Red | Green) and [structure] abstract this on the Red cube:
applying this on Green creates a different function. This happens because
structure abstractions are done on the hierarchy, and flat-form abstractions
are part of the hierarchy.
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Chapter 6

System Outline

BOOMS provides a general framework for hierarchical editing. This includes
an intensional DAG data structure with node elements, a built-in structure
editor that handles this structure, and hierarchical abstraction facility. The
system supports multiple editing domains having a separate package im-
plementation for each, three sample packages are provided. All interface
functions are specialized in the domain package, allowing multiple editing
interface implementation — for example, having a flat-form view alongside
the structure view.

BOOMS is more appreciated by programmers than by end-users. The
main goal is to develop an extendible system that can serve as a good ba-
sis for more editing domains on one hand, and an elaborate user interface
on the other. The system is large1, therefore only the guidelines principles
are presented here — see the Appendix for a complete documentation and
program listings.

6.1 Nodes

Nodes are the building blocks of the intensional DAG structure. Each node
represents some subexpression — the node type denotes (intensionally) an
operation constructor. Each node has links going upwards and downwards:
a downward link points to an argument of the constructor, and an upward
link means the node is an argument of some other node. Intensionality is

1The application contains 40 files, 8 packages, 154 classes and 872 macros / functions
/ methods, all this in about 13,000 lines of code.

61
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provided by the fact that nodes are objects and links are pointers to nodes:
one node can be a shared argument of more than one other node.

In the standard-iconic graphic environment, nodes are called icons2. These
two terms are used equivalently from now on.

Node Features

• Node objects are instances of classes, each representing an editor do-
main operation. Nodes have argument lists that can be of three types:

1. A fixed number of arguments, each one has a distinct symbolic
name.

2. An argument accepting a list of values (node links).

3. No arguments — this case represents a leaf node.

Nodes with list arguments are useful for many operations. These nodes
can evaluate with no arguments connected, representing a future inten-
tion to fill this node. (Fixed argument nodes can usually be evaluated
only when all arguments are full.)

• Argument links are pointers, and because nodes are objects with change-
able state-value variables, the intensional behavior is automatic. For
example, when the arguments of a node change, the flat-form evaluation
result of all parent nodes will change. This also enables subexpression
sharing.

Usually, the arguments of a node will be links to other nodes, however,
there is an option for having simple value arguments. This simplifies
editing, for example, if there is a general ‘stretch’ musical operator: we
don’t want to force the user to manipulate number leaves whenever this
node is used. The number can be a direct argument of the node (using
the node edit dialog box).

• The node link mechanism includes a simple type-checker. Each node
has an ‘evaluation’ function with a declared output type, and each
argument of a fixed-argument-node, or the single one of a list-argument-
node, is declared to accept some type. This applies to types of linked
nodes as well as types of simple value arguments.

2The ‘Icon’ class is a subclass of the ‘Node’ class.
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The type-checker allows an argument slot to accept only values of its
declared types, or subtypes of it (in CLOS this includes subclasses).
This is a basic approach, similar to specialized method argument lists
in CLOS, but it is enough for considerably improving the hierarchy
consistency.

• Almost all node-related functions are methods, allowing specialization
on all node behavior aspects — from argument handling to type check-
ing and evaluation.

This allows a customizable node graphic user interface management —
colors, fonts, events and specialized property sheets. A good example
for this is the text icon which is quite different from standard nodes —
it cannot be linked to any other nodes, and it looks different.

Nodes interact with other nodes by means of message-passing. This
is also using specialized methods — like “evaluate” messages flowing
down the hierarchy and “forget-value” messages flowing up.

• Nodes use memoization for optimizing evaluation — nodes never get
evaluated unless their value is actually needed, and this value is cached.
This, however, cannot be called lazy evaluation: the current implemen-
tation evaluates during evaluation of some parent node evaluation, forc-
ing it to get all of its sub nodes values recursively. This is an applicative

order evaluation method.

A minor modification to this evaluation scheme is to get the value
of some sub node argument only when this value is actually used —
enabling normal-order evaluation. This is effectively equivalent to the
graph-reduction methods in [23]. This is implemented in BOOMS as
an optional argument to the node class declaration. Usually, simple
domains that are meant to be used by novice users are implemented in
BOOMS, so such a feature is not important: it takes a sophisticated
computer-theoretic user to catch BOOMS in an infinite loop using only
abstractions. . .

• Structure abstraction is probably the most powerful feature of hier-
archical editing. These are fully described in Section 5.3. Structure
abstractions are extensively used in BOOMS; many supporting mech-
anisms are provided for a powerful, yet intuitive user interface on one
hand, and simple, reusable program implementation on the other hand.



64 CHAPTER 6. SYSTEM OUTLINE

These abstractions are used a several ways:

– The main usage of structure abstractions is the capability of hav-
ing user-defined nodes. This is the usage intended in the first
place. The graphic user interface supports this by having abstrac-
tions named and placed on the node class palette for later usage.

– Another usage for structure abstractions is zooming out — the way
users focus on some part of the hierarchy, not having too much
extra visual distractions. This is supported by the graphic system
by allowing unnamed abstractions to be created and immediately
replace the original icons. Actually, named abstractions behave
the same, but having unnamed abstractions is useful for zooming
out.

– It is sometimes desirable to have a useful group of icons named so
creation of more copies of this group is possible. Abstractions can
be used for this — abstracting the icon group, then instantiate
the new class in other places and exploding it (explosion is the
opposite operation of abstraction). However, This is a misuse of
the abstraction feature: there was no intention for abstracting on
the first place, all that was needed is a name for this icon group
and the possibility to have more copies of its structure. Neither
minimization of the group to an icon nor naming this icon as a
user-defined operation is needed. Another disadvantage of this
method is the fact that only node groups with a specific limited
form can be used for creating an abstraction, see Section 5.3.1).

This usage is provided by the named copies feature. This is basi-
cally identical to the copy / paste facility, except that the copied
set of icons can be given a string label for later pasting. No ab-
straction is created in this process, and the label appears in a
special (“named-copies”) section of the node class palette.

6.2 Document Types

The BOOMS framework provides support for more than one editing domain
implementation. This is enabled by the document-type mechanism — there
are several packages implemented, each defines a separate editing domain.
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Document Type Features

• Each document-type package defines a whole domain. This includes
an implementation of a set of domain dependent node classes that
represent the intensional equivalence of editor operations.

User defined classes are associated with their original document type.
This means that abstractions and named copies are available only in
documents of their original type.

• Window functions are methods that are specialized on document types.
This is convenient for having specialized evaluation visualization, dif-
ferent node menus and node properties etc.

Another possible use for this is having a different user-interface im-
plementation — such that uses the double view approach described in
Section 6.3.

• There are currently three built-in packages implemented in the BOOMS
system:

Arithmetic This sample package handles intensional representation
of simple arithmetic expressions, it is described in page 23. The
flat-forms handled in this domain are natural numbers.

GCalc This package fully implements the GCalc domain described in
Chapter 4 with abstractions from Section 5.2. Flat-form values are
conceptual cube values. This is the only package that implements
a dual-view editor (flat-form / hierarchical).

Music This is an implementation of the original motivating domain
— the music domain. The flat-form values of this domain are flat
music pieces, and ‘visualization’ is done by audio playing the piece.
As a music editor implementation, this package is extremely sim-
ple — only very basic constructors and functions are implemented.
Many more features can be implemented, as seen in computer
composing tools that exist today.

6.3 Multiple View Editing

BOOMS provides the needed basis for implementing a multiple view editor.
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Multiple-view editing means having several editing windows, existing si-
multaneously for the same data. Different windows can represent data in
different ways, and operate using different user-interfaces. This supports a
selective view, and enables coexistence of a graphic, textual, and acoustic
user interfaces. Multiple view editing is demanding, since it requires inti-
mate interaction between a view and its underlying data — there is a need
for thoughtful separation between knowledge levels.

Implementing multiple views is simplified by the “Document-View” ap-
proach. This was developed in the 1980’s in Smalltalk as a way of organizing
graphic user interface programs [25]. It is best implemented using object-
oriented programming. The central idea is having two objects interacting
one with the other:

Document This object represents the actual data. Operations on data
should be implemented as methods of this object.

View The view object defines the graphic user interface to the document.
The methods defined for view objects are graphic input/output meth-
ods — visualizing the data, and graphically perform operations on it.

The document object can be thought of as implementing the ontology, and
a view object as a syntactic tool for accessing it.

The document-view approach has many organizational benefits, one of
them is the simplicity of having multiple views representing the data object.
Each view visualizes the data objects in some way, and changes in the data
objects are reflected to all of its views. This allows having two different
view windows opened side-by-side, and working in one window, observing
the changes in the other.

This is used in BOOMS to integrate flat-form editing with hierarchi-
cal editing — BOOMS has an internal data structure which is the opera-
tional hierarchy, and a built-in hierarchy editor. The GCalc package uses
the extendibility of BOOMS to incorporate a second view which is an imple-
mentation of the GCalc flat-form editor. Work is therefore possible in the
hierarchical world of operations as well as in the GCalc native editor.

The Reflection of the history of flat-form editor operations in the BOOMS
hierarchy allows for ‘users education’. The natural editor for a beginner will
be the flat-form editor, which supports intuitive work. As work advances, the
user might explore from time to time the hierarchy created, up to the stage
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he understands it. At that point, the user can start reorganizing hierarchical
expressions to reflect his intentions (like sharing subexpressions or having the
hierarchy based on logical subunits). Finally, when becoming an advanced
user, one should use the flat-form editor only for brief sessions, creating the
“building blocks” for more complex creations. The musical domain equivalent
of this is using the keyboard for entering very short pieces and working with
the musical hierarchy combining them into larger pieces.

6.4 Miscellaneous

There are many more features in BOOMS, many of them are dedicated to
an implementation of a smooth user-interface (see Section 6.5) and program-
interface (Section 6.6). Few of these features are described below.

• BOOMS uses an extensive graphic user-interface. This includes the
usage of many Windows features like configurable graphic node at-
tributes, right-button menus, palette, tool-bar and status-bar.

• There are utility node classes that are used in all document types —
like identity nodes (for intensional abstractions), text label nodes (for
graph decorations) and Lisp-value leaves.

• Copy / paste operations are implemented. These handle the subgraph
defined by the selected set of icons, including its internal links and
excluding its external links.

• Saving and loading operations are also implemented. A full document
hierarchy is saved with its used named abstractions (a document con-
taining several named abstractions can be used as a user-defined func-
tions library), and the window attributes (location, size etc.).

• Finally, BOOMS was developed for the final goal of implementing music
editing, therefore it has built-in MIDI support. A MIDI driver (in the
form of a DLL) written in C and a Lisp interface to this driver are
implemented.
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6.5 User Interface Considerations

BOOMS was designed around the main concept of being a general editor
that allows hierarchical manipulation of creative domains. This emphasize
usage by creative people, which are usually novice computer users. There
are, of course, creative people that are used to do their work on a computer,
but the majority needs intuitive user-friendly editors.

[26] is a good source for user-interface discussions. A major subject of this
book is “direct manipulation” which means that a good user-interface should
provide direct manipulation of the work domain. In BOOMS, we manipulate
both the flat-form domain and the structure representing the user intentions
— by having the native domain editor merged into an environment that
supports structure (historical) editing.

Another aspect is having an “Extreme User-Friendliness” philosophy —
as demonstrated by this quotation:

When an interactive system is well designed, the interface
almost disappears, enabling users to concentrate on their work,
exploration, or pleasure. Creating an environment in which tasks
are carried out almost effortlessly and users are “in the flow”
requires a great deal of hard work from the designer. [26, page 9]

6.5.1 Expectations Detection

A reliable user-interface is crucial for an editor to be accepted by users. A
good example is the demand for bug-free commercial software: when working
in the commercial software industry, it is often the case that an application
is presented for sale before all bugs are wiped out. When a user encounters
such a bug he will usually regard this software as unreliable, and not use it
even after the bug he encountered is fixed. This will make most users stay
with the application they are used to. Creative users that use computers for
the first time will probably abandon the whole idea of computer editing.

An important aspect of having a reliable user-interface is expectations
detection. This means that if something is expected by the user, then the
system fulfills this expectation. One of the implications of this is having
appropriate defaults whenever needed — the system will provide a default
behavior when it is expected. An example of this is the operation of linking
nodes: usually, a line should be stretched from one node’s socket to another,
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but the system guesses the destination socket when the line is dropped on an
icon body (this is using the specified argument types declarations for nodes).
However, defaults are not used excessively. For example, a possible user-
interface implementation can use automatic graph layout for icon placement.
BOOMS takes the opposite approach of having the user use his own preferred
layout — icons are placed by the user. This seems like a better interface for
users that use different placement schemes as another expressive dimension.

Another aspect of expectation detection is having the system merge into
the graphic environment. Users of a graphic windowing environment tend
to get used to standards in this environment, and take any feature that is
not standard as annoying. In the BOOMS case, the graphic environment is
Microsoft Windows, so many features are implemented. Some of them are:
pull-down menus, pop-up context sensitive menus, tool-bar, status-bar and
standard accelerator keys. These are described in the next section.

6.5.2 GUI Usage

Graphic User Interfaces such as Windows have a critical role when making a
software package available for novice users. This means that when designing
such applications, the GUI should be used as much as possible — this is also
the case of the BOOMS system.

BOOMS uses Microsoft Windows as the user interface environment. This
environment is designed to provide users with convenient and standard appli-
cation environment — there are many conventions that Windows applications
follows. The BOOMS system is no exception for this — the implementation
uses as many standard features as possible. A detailed list is given:

• Menus are the basic way for a user to send command to a Windows
applications. There are menus of two kinds — pull-down menus and
pop-up menus. Pull-down menus are the standard menus that are at-
tached to the top of the window, these contain all BOOMS commands.
BOOMS also uses context-sensitive pop-up menus, described in the
next item.

• When the right mouse button is clicked, a context-sensitive menu pops.
This is a standard feature in Windows that is implemented in BOOMS.
There are different menus for the BOOMS window, document windows
and nodes.
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Node menus are chosen using a specializable method, so these menus
contain node specific operations.

• A tool-bar is also used in BOOMS — this is a small bar on the top
part of the BOOMS window that displays some buttons and controls
that provide convenient shortcut to frequent commands.

• The status-bar is a display area at the bottom of the BOOMS window
which is capable of displaying relevant messages to the user. This serves
several purposes:

– Help messages are presented for menu items and tool-bar buttons.

– Provide visual feedback for long operations like load / save.

– Various informative messages are presented, such as error mes-
sages and a description of the current node / socket the mouse
pointer is located at.

• Accelerator keys are used as yet another way of shortcuts to common
commands. These include several key combinations that are used in all
window applications (Control-S, Control-O etc.) and other keys that
are specific to BOOMS.

• A common feature among modern applications is property sheets. BOOMS
enables node editing through edit dialogs that resemble property sheets.

The edit dialog mechanism allows definition of edit panes that will
operate on node properties (these might be specific to the package
used). Then, a node method can choose the pages available for a node.
Two standard pages are implemented — the node edit page (editing
node arguments using a dialog) and the colors edit page.

• The management of nodes and sockets means that the user should
know what socket or icon he is manipulating. This can be unclear in
some situations, where there are a lot of icons crowded in a small place.
BOOMS makes this easy by indicating the current icon and socket in
the status-bar as well as a graphic indication — the node which is under
the mouse pointer (if any) is highlighted, as well as the socket pointed.
This is not confused with the highlighted icons that are the selected
icons for the next icon-group operation.
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• Floating palette windows are very useful in applications that provide
selection of a tool from several available, like selecting the graphic tool
to use in a drawing software. In BOOMS, such a selection is made of
the node class that is used for creating instances. This is made from a
floating palette that contains a tree of selectable node class names. This
tree is not based on node classes inheritance trees, but on a hierarchy
defined only for this user interface.

This palette aid the user in three ways:

1. The user can choose a node class to create instances of.

2. The palette provides a visual indication of the current selected
class.

3. An optional, sometimes more convenient use of the classes palette
is for both selecting a class and instantiating it — by clicking on
a class name, and dragging it to the document.

• The Windows standard “Document-View” approach is used by BOOMS
(this is described in Section 6.3). This has an effect mainly on the pro-
gram structure, the effect on user interface is that it is generally easier
to implement standard Windows behavior, like multiple views. Using
this approach in BOOMS, adding more Windows features like having
several windows for the same document can be added.

Graphical Ethics / Esthetics

Another aspect of GUI usage is that it should be “well-behaved”. This is
demonstrated by several points:

• ‘Affordance’ — this means that the way graphic objects should be used
should be obvious by their visualization. For example, the appearance
of a button is enough for saying “Push me!” to the user. Example for
this in BOOMS is the visualization of node icons that makes linking
them a natural operation.

• A different point is the graphical ethics — everything should be conve-
nient enough for a novice user. This generally means that the program
should be complete in the sense that all details were worked on. This
is demonstrated by having a movement threshold for triggering a drag
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operation (a system that moves objects on every random click is highly
annoying), or by having the load operation restore the window position,
size and state that were actual when it was saved.

6.5.3 Visualization Considerations

We discuss now the visualization that is used in BOOMS. Good visualization
relies on a good system design — the system should be implemented in a
way that is faithful to the ontology domain. There is a tricky point that
should be fully understood here: when using flat-form editing, the ontology
is the domain objects, a hierarchical structure defines some domain objects
implicitly. However, when using the structure editor for manipulation of this
hierarchy, the ontology is the historical operation structures — a hierarchical
structure is an explicit object in this domain.

Direct Manipulation

An system that uses “Direct Manipulation”3 is a system that enables working
with a direct [visual] representation of its domain values. This is especially
important when using editing systems. A good example is the full-page
display editors. Such visual editors improved the world of text editing when
they replaced the line-oriented text editors that were once common. The
difference is that using visual editors, one can immediately see the result of
his work — the screen reflects the final text file. Using a line editor a print
command should be issued in order to see the result.

Most editors cannot be as direct as visual text editors. The representation
used by a visual text editor is truly direct — the screen shows exactly what
the printer will print. Other editing domains settle for some visualization
which is as close as possible to the domain. Using direct manipulation makes
an improved system — the system is more intuitive thus easy to learn and
master.

The implementation of direct manipulation in BOOMS is double-faced.
We have a flat-form editor, which naturally uses a visual representation of
the domain object. The hierarchical editor should also implement direct
editing of hierarchies. Using a visual DAG representation made of iconic
nodes is ideal for this purpose — this is the natural way for users to think of

3Direct Manipulation is described in length at [26, Chapter 5].
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hierarchies. Other approaches like windows-inside-windows, frame diagrams
and HyGraphs tend to be more complex for users (and programmers). Some
of these other approaches can be found at [27].

Conceptualization

BOOMS is an editing environment that should support the concept of hierar-
chical editing. Programming such an environment is simplified when concep-
tualize in the “right” way. Here the term ‘conceptualization’ refers to the way
the program represents its real-world / user-interface. The BOOMS project
uses CLOS classes for this purpose (see Section ADVANCED-PROGRAMMING-
LANGUAGE). The program is well formed into separate layers, each repre-
sented by several classes. Two important layers are the internal data struc-
ture layer and its visualization — this is built as a stand alone class that is
used to add the GUI capabilities to the internal object (using inheritance).
This results in a stable user interface, for example — user defined functions
behave like any other node class.

6.6 Program Interface Considerations

One of the main goals of the BOOMS project is to serve as a basic application
that can be easily expanded by other programmers, for implementing more
domain editing packages. The system should therefore be “Programmer-
Friendly” — the application should be:

smooth The program should be well-structured, it should be layered, con-
tain independent layers using a well-defined interface and functions
should be short and understandable. Bad programming makes frus-
trated programmers that will not use it as a basis for their extensions.

robust A system that is meant to be extended should stand to major shocks.
Bad systems usually demand total rewrites when some basic feature is
to be added or modified. A good example for such a property is Emacs
Lisp programs — the hooks facility is commonly used to provide a code
that can be customized without rewriting it. Object-Oriented program-
ming is another technique that can be used for code customization,
especially when implemented in a functional language (manipulating
functions as first-class objects). BOOMS uses CLOS which is very rich
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in this area (for example, :before, :after and :around methods for
customizing methods).

powerful BOOMS should provide enough power, so people will actually
want to use it as an editor. There is no point having this whole project
if the final editor is so poor that people don’t like using it. A good
example is one of the first versions of BOOMS that was so slow that it
could not be used for any purpose other than demonstrating a vague
general idea.

extendible Finally, the system should lend itself to external programmers
wishing to extend it. In general, every part of the program was designed
with a thought of usage by other programmers. General mechanisms
were implemented all over, a thing that made the program huge, but
very powerful: many features can be used as a basis for many other
programs, not only structure-editing applications.

These features should make the application have a longer life cycle. The
main advantage is having a well-designed program. This can be compared
with the Java programming language, that is a well designed language that is
intended to serve as a common extension language: more and more institutes
teach Java today as a first language, instead of the outdated Basic language.

6.6.1 Advanced Programming Language

The selection of a programming language is important when programming
any application, but it can be a major issue for an application that is to
be extended. Imagine a programmer reading the BOOMS sources for imple-
menting some structured editor, now imagine the sources contain assembly
code. . .

An advanced high-level language is needed for fulfilling the properties we
want BOOMS to have. The language chosen for implementing BOOMS is
Common Lisp, the Lisp version is Franz Common Lisp for Windows. Lisp
was chosen due to many reasons:

• Common Lisp is one of the most advanced programming languages
that can be used to write GUI applications. It features CLOS, an
object oriented extension that is the first ANSI standard for an object-
oriented language. The language contains many useful features, the
official specification is extremely long, see [28].
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In the same time, Lisp can be used for low-level optimizations — ex-
amples are macro expansion and system calls. The code is compiled
using built-in incremental compilation facility.

• Lisp supports rapid application development by allowing the program-
mer to focus on global, top level programming rather than going down
to local, system details (using C++ one always bumps to system level
issues). This is compensated by having a slower application, but mod-
ern computers, and careful programming solve this problem.

• Using CLOS is a big advantage. The implementation is fully object
oriented: classes ad methods are constantly used, so every aspect of
BOOMS can be customized. This enables many of the features we
require.

• The code is kept in mostly small self-explained functions. This is aimed
at allowing external programmers to answer most of the questions that
arise by simply reading source files. Building large applications from
small functions is conventional in Lisp.

• Functional programming for extension language — functions as first
class objects. Useful for a future music library — implementing a an
algorithmic nodes, containing Lisp code.

6.6.2 Technicalities

Lisp applications usually suffer a certain amount of performance deficiency.
This is shown both in two aspects:

Runtime Lisp programs tend to be slower than C-dialect programs. Some
of the reasons for this are:

• Runtime type-checking is very slow compared to compile-time
checking.

• A garbage collector makes life simpler, and program hang-ups —
this is highly annoying during interactive operations.

• Using powerful tools for performing a simple tasks (e.g., using
equalp instead of eq).

• Using many small functions with no in-lining is slow.
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Appearance Lisp GUI programs have a general tendency to look less pol-
ished than C++ programs. This is due to the language focus on con-
ceptual matters rather than concrete system oriented programming —
Lisp programmers are generally less aware of low level / operating sys-
tem issues (this affects runtime performance as well).

BOOMS, being an interactive GUI application, cannot afford bad re-
sponse time, or a amateur user interface, so these problems are specifically
handled. (The many advantages of Lisp make the solution of using C++ less
attractive.)

Efficiency

As said above, Lisp code can be heavily optimized. Here we encounter a con-
flict: optimized Lisp code makes it lose its clarity which is another feature we
want to have. The “golden path” that is used in BOOMS, is optimizing the
code without using declarations. Two important issues are heavily attacked:

1. The redrawing mechanism is crucial for interactiveness. An early ver-
sion of BOOMS that was programmed on MCL (Macintosh Common
Lisp) was a failure as an interactive system due to very bad redraw
time. The manipulation more than of 10 icons took about one second
redraw time per icon — a fact that made it useless as an interactive
editor.

A lot of effort was therefore invested in the current implementation.
This involves geometrical functions, and Windows specific functions —
delaying redraw events, and drawing on a part of the screen. BOOMS
can can handle now hundreds of icons with acceptable redraw time.

2. GC is a general problem of functional languages, and Lisp is no ex-
ception. Avoiding unnecessary GCs was mainly achieved by using pre-
allocated objects and destructively modifying them. This is done by
heavily using the “#.” Lisp construct (see [28, Section 22.1.3] for a
formal definition). A code example demonstrates this best4:

(defun NNBOX-TOP-LEFT (box)

(let ((pos #.(make-position 0 0)))

4These examples use two Allegro Lisp data types: position and box. Their usage
should be obvious.
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(nmake-position pos

(box-left box) (box-top box))))

(defmethod ICON-SET-POS ((icon icon) (pos position))

(let ((offset #.(make-position 0 0)))

(ncopy-position offset pos)

(nposition- offset (icon-center-pos icon))

(dolist (box (icon-box-list icon))

(nbox-move box offset)))

(set-modified (icon-doc icon)))

The first function returns the top-left corner of a given box value which
is a position object, but each invocation of this function returns the
same [modified] object. This can be dangerous — for example, one
expression cannot use two calls to this function. The second function
hold a single preallocated position value, and modify it on every call.

This is the general approach used, especially in interactive functions
like the mouse-move event handler and the drag-and-drop mechanism.

Graphics

Much work was invested in making a smooth user interface. This means
that although the main focus is on the conceptual level, the program is never
“too clean to get into system details”. This help achieving the global goal
of having users believe in the system (Windows users will not take any non-
standard application as reliable).

This includes working around bugs found in the Franz Lisp interface
code, and code fragments that handle things that does not look important
(like event handlers and menu functions). A good example is the color-
box button widget: there was a need for some dialog widget used for color
selection. Using a standard button does not allow visual indication of the
current color, making bad interface, so a whole new Lisp widget was designed
and implemented.
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Chapter 7

Conclusion

Hierarchical editing and structure abstractions are the main features of the
BOOMS application framework. Hierarchical editing enables direct manip-
ulation of structured objects with an operational meaning. Hierarchical ab-
straction is a user-interactive way for creating new functions. These can be
compared with keyboard-macros that are used in text editors, since both are
created by naive users during an editing session. Both create objects that are
recordings of edit operations for later reusage. Using BOOMS abstractions
is more powerful since it allows recording of operation patterns rather than
flat sequences. BOOMS supports explicit management of operation patterns,
allowing editing of abstractions.

The BOOMS project shows that the multiple views approach can be used
to design robust user editing environments. The interaction between different
modes (flat-form and hierarchical) confronts different expressions of concep-
tual operations. In BOOMS we saw that with respect to the abstraction
and application operations: they were treated differently in the flat-form
and in the hierarchical editor. The interaction resulted in interesting fine
distinctions.

The extension of the flat-form editing with the BOOMS system was rel-
atively smooth, due to the clean separation between levels of knowledge in
BOOMS. In particular, the strict separation between visualization and inter-
nal structuring proved essential. The demanding music application played
a crucial role in the development of BOOMS, since it was not possible to
give-up hierarchy, intuitive visualization, or abstraction.

Of the three package implementations in BOOMS, the music package is
the only one that can have concrete usage. Indeed this package deserves

79



80 CHAPTER 7. CONCLUSION

extensive enhancements.

7.1 Future Music editing Development

BOOMS is far from being a musical editor that composers will choose as
a working tool. The music package that is currently implemented is only
a demonstration — this should serve as a basis for a fully functional music
editing package.

Here is a list of features that can be added for an implementation of such
a package:

Rich Musical Libraries A rich musical library is found in all music editing
tools used today. Such a library should include many useful functions
and data types. It should allow more than simple MIDI music and more
than a single visual representation of music pieces. A good example is
[13]. A CLOS music knowledge base for fundamental concepts in tonal
harmony, based on a concise arithmetic for notes and intervals in the
tonal system, is also in preparation.

Musical Flat-Form Editor As discussed in Chapter 4, a flat form editor
is important for novice users. Such an editor should be implemented
as part of a functional music editor — it can be based on any existing
conventional editor.

Multiple Views for Music Editing Views other than the hierarchical and
the flat-form views can be useful to implement. Each is convenient for
different type of editing. The view types can contain:

1. A BOOMS hierarchy view (the built-in editor).

2. Flat form editing, based on a score view.

3. Procedural representation — Lisp or Scheme code.

4. DMIX-like bar graphs.

5. MIDI event editor.

6. Music lambda calculus [19].

Streams Streams are very useful data types for computer-music composi-
tions. A good example for good stream usage can be found in the Com-
mon Music editor [20] and also in the editor implemented at Grame[14].
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Algorithmic Nodes Nodes with a function attached, these can be useful
for creating algorithmic music — allowing usage of loops, random notes
conditionals and more. Scheme will be perfect language for this.

Real-Time Having real-time editing — use the system as a performance
tool.

Attribute Management The idea, presented in [29], is decorating musi-
cal nodes with various attributes to enhance expressiveness. These
attributes propagate through the hierarchical DAG in several ways:

• Timbre attributes propagate up.

• Author and performance directives propagate down.

• Velocity is accumulated going upward.

• Tempo-setting attributes have a side-effect whenever reached dur-
ing playing of music pieces.



82 CHAPTER 7. CONCLUSION



Appendix A

BOOMS Users Manual

A.1 Platform

BOOMS was written on Franz Allegro Common Lisp for Windows. It is not
a stand-alone application, so Lisp should be purchased and installed. The
program uses a lot of Windows functions so porting it to other operating
system is not possible. The project was written and tested under Microsoft
Windows 95, no other Windows versions were tested, but generally it should
work on any 32 bit Windows.

The recommended environment includes:

• A PC with 8Mb RAM or more and fast CPU are preferred features.

• Windows 95.

• Allegro Common Lisp for Windows — version 3.0 and above.

• Video resolution of 1024 × 768.

• BOOMS does not require much disk-space (Allegro Lisp does that).

A.2 Getting BOOMS

FTPing The whole system can be found at

ftp.cs.bgu.ac.il:/pub/people/eli/booms.exe.

83



84 APPENDIX A. BOOMS USERS MANUAL

This is an ARJ self-extractor file. Here is a sample session for getting
BOOMS (user input in bold face):

mycomputer> ftp ftp.cs.bgu.ac.il

Connected to lace.cs.bgu.ac.il.

220 lace FTP server (Version wu-2.4(7) Wed May 1 20:16:54 GMT+0200 1996)

ready.

Name (ftp.cs.bgu.ac.il:eli): anonymous

331 Guest login ok, send your complete e-mail address as password.

Password: ...

. . .

230 Guest login ok, access restrictions apply.

ftp> cd pub/people/eli

250 CWD command successful.

ftp> bin

200 Type set to I.

ftp> get booms.exe

200 PORT command successful.

150 Opening BINARY mode data connection for booms.exe (563818 bytes).

226 Transfer complete.

local: booms.exe remote: booms.exe

563818 bytes received in 1.4 seconds (3.8e+02 Kbytes/s)

ftp> quit

221 Goodbye.

mycomputer>

If any problems occur, send mail to eli@cs.bgu.ac.il

Extracting The system should be extracted to some (preferably new) di-
rectory, this is done by running the self-extractor. For example:

C:\> cd allegro

C:\ALLEGRO> md booms

C:\ALLEGRO> cd booms

C:\ALLEGRO\BOOMS> copy a:booms.exe

1 file(s) copied

C:\ALLEGRO\BOOMS> booms.exe

. . .
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A.3 BOOMS Loading / Compiling / Run-

ning

First thing you should make sure that the valid file types variable, *load-pathname-types*
is bound to ’(#p".fsl" #p".lsp") (this is useful anyway), and that *default-pathname-defaults*
is bound to the directory containing BOOMS. Changing the Lisp working di-
rectory is another thing you would probably want to do. This can be done
by having these three lines:

(setf *default-pathname-defaults*

#P"C:\\ALLEGRO\\BOOMS\\")

(setf *load-pathname-types* (list #p".fsl" #p".lsp"))

(set-current-directory "C:\\ALLEGRO\\BOOMS")

added in C:\ALLEGRO\STARTUP.LSP file (assuming this is the Lisp installation
directory).

Once you’ve got this done, loading, compiling, and running BOOMS is
simple, each operation is performed by loading a file indicated in this table:

Loading LOAD.LSP

Compiling COMPILE.LSP

Running RUN.LSP

If the system is already loaded — the function ‘booms’ can be also used for
running it.

Note that Allegro Lisp for Windows automatically compiles loaded func-
tions, so compilation has affects only load-time, not run-time.

A.4 Using BOOMS

This section provides a brief description of using the system. This is based
on the assumption that the reader is already familiar with the hierarchical
editing ideas as described in this work. Specifically, these subjects should be
clear:

• DAG representing an editing session operational hierarchy.

• Management of such a DAG.

• Creating and using a structure abstraction.
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Anyway, this is just a brief description of BOOMS operations available to
the user, it is not a replacement for actual experimenting.

A.4.1 General Hierarchy Editing

The BOOMS hierarchy editor manages operational hierarchies based on an
editor domain. Each document in BOOMS (a file) contains an operational
hierarchy DAG consisting of nodes.

Nodes

A node is represented by a small rectangular icon with sockets that can be
used as links to other nodes. Nodes are created by double clicking a clear
spot on a document window, or by dragging a node-class name from the class
palette (see below).

Manipulating nodes is as simple as manipulating icons in any standard
Windows applications. Selection is done by clicking nodes or by selecting a
surrounding rectangle. If the shift key is held down, then the selected icons
are toggled rather than selected.

When the mouse pointer is over an icon, indicative text is printed on the
status-bar, such as the node type, arguments and value. The icon is also
highlighted to make sure that close nodes are not confused.

Double-clicking a node causes it to evaluate, this is visualized in some
way that depends on the document type. Right clicking pops a node menu,
that often contains operations specific for this node. Using this menu, or
clicking the node with the Control key down pops up a node edit dialog that
is used to modify the node properties.

Sockets

Nodes have sockets near the top edge and near the bottom edge of the icon.
The top socket is the output-value socket and the sockets on the bottom are
input argument sockets. There are three types of argument sockets for nodes:

1. A node can have a fixed number of arguments. An unconnected socket
remains visible, and the node cannot there are any.

2. A node can have a list of arguments. Such a node can always be
evaluated. When a link is deleted, its socket is deleted. The number of
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visible sockets is always one more than the actual arguments connected:
the extra socket is used for connecting new node arguments.

3. Finally, a “leaf” node is a node with no sockets at all — it is bound to
appear at the bottom of the DAG.

Sockets are typed: the top socket determines the node evaluation value
type, and the bottom argument sockets have types that determine what
output sockets can be linked to them.

Manipulating argument links is simple: connecting two nodes is per-
formed by dragging a line from one node input (output) socket to the other
node output (input) socket. If the link is dragged to the socket body, then
some appropriate socket is selected by a default method. When the mouse
pointer is over a socket, the socket is highlighted indicating a link drag op-
erations can begin, and the descriptive node description line on the status
bar is modified to show extra information on this socket. Deleting a link is
done by clicking its top socket to a clear document part (the bottom socket
cannot be used for this as it is an output socket and a new link will be created
instead).

Finally, an alternative way of modifying node arguments is by using the
node edit dialog box. This is the only way to specify constant [Lisp] values
as being node arguments.

A.4.2 Document Types

A document type package is an implementation of some specific editor do-
main, meant for hierarchy editing implementation in BOOMS. Each docu-
ment type package defines a whole environment. The main definitions are
for specific node types, with some additional customized code like specific
menus and edit panes. Three document types are defined:

Music

This implements a simple hierarchical music editor. It is based on the Music
Structures approach. This package is intended to demonstrate the possibility
of a music editor implementation, much work should be invested to make this
an editor that can attract composers.
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The node classes defined in this package are simple music concatenations,
and some basic functions. Flat values are flat music pieces — double-clicking
an icon visualize this by playing the music piece on a MIDI channel.

GCalc

The GCalc package implements the cube world defined at Chapter 4, based
on [19]. This package is the only package in BOOMS implementing a dual
editor: there are always two views connected to the same document, one of
them is a “flat-form editor”, and the other is a hierarchical editor.

Node classes are cubes constructors, flat-form abstractions and applica-
tion. Double-click visualization is done by displaying a window with the cube
drawing.

Arithmetic

This package implements the arithmetic example from Section 4. It is a
simple example of a package implementation in BOOMS, that can be used
as a basic template for implementing more packages.

Node classes are arithmetic expression constructors. Evaluation of these
nodes yields an integer number, which is displayed in the status-bar upon
double-click evaluation.

Shared Icon Classes

There are several shared node classes that are available in all document types:

Identity Nodes These are icons that output the same value connected to
their input. They are useful for structure abstraction — when it is
desired to have the opposite behavior of the “Same-Node-Same-Arg”
option:

When an icon list that is about to become an abstraction have one
argument connecting in more than one place, the Same-Node-Same-
Arg option will determine the result. If this option is on, then a single-
argument abstraction is created, otherwise each occurrence will have a
corresponding argument socket.

An example will make this clear: if the expression 2 + 2, having the
same 2 object connected twice to a binary plus node, is abstracted on
the single 2 object then the result will be:



A.4. USING BOOMS 89

• X+Y if Same-Node-Same-Arg is off, and the two argument sockets
X and Y are connected to the 2 object.

• X + X if Same-Node-Same-Arg is on, and the single X argument
is connected to the 2 object.

The intelligent reader can see that an identity node can be used in both
cases to have the opposite behavior.

Lisp Value Nodes Constant nodes contains a single Lisp value that is used
as the value of the node. They can be used only by a user that is aware
of the underlying Lisp implementation and data types used.

Flat-Form Abstractions / Application These node types implement the
flat-form abstraction and application operations. They are available
only when the document-type package defines the needed search and
replace operations.

Text Nodes These are non-conventional nodes that cannot be part of the
operational hierarchy. They are used as text labels for decorating the
hierarchy with short, descriptive messages.

A.4.3 The Class Palette

The class palette is a small floating window that is placed at right side of the
screen. The palette shows all available node classes, hierarchically ordered in
a collapsible tree. The hierarchy is not determined by internal aspects such
as class inheritance, it is only for user-interface convenience.

The palette is used in three ways:

1. It gives a visual indication of the current node class selected.

2. Clicking on a class name makes it the current node class (double-
clicking will create instance of this class).

3. The two operations of selecting a class and then creating an instance,
can be compacted into a single click-a-class and drop-an-instance op-
eration.

The classes menu is a equivalent to the classes palette and can be used
instead.
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A.4.4 Abstractions

Abstractions are created by selecting some icons and performing an abstrac-
tion operation. This icon groups must stand in these conditions:

• The icon list compose a connected subgraph.

• This subgraph have a single root node (for determining the abstraction
type).

• All external links (going from nodes in the icon-list to other nodes) are
either from the root node upward, or from leaf nodes downward (leaf
nodes in the selected subgraph).

The abstraction created is an icon with the same output type as the root
node of the abstracted icon group. This node contains argument links that
correspond to the external nodes that were connected as arguments to the
group icons. If the Same-Node-Same-Arg option is set, then each argument
object will have a matching abstraction input socket. If it is not set, then
each link will have an argument socket — if the same object has two links to
the group icons, two argument sockets will be created.

The created abstraction icon immediately replace the original group, and
its input and output sockets are linked correctly so the DAG has basically
the same values.

If the abstraction is named, its name will be added to the node class
palette, under the user-defined label. In this case, more instances of this
abstraction can be created. Named abstractions are labeled by their names,
so they appear as a user defined function (abstraction names should indicate
their operation).

Abstractions can be exploded by the user. This means the original node
subgraph will replace the abstraction (with arguments correctly linked). This
can be done for an unnamed abstraction as well as on a named one.

This facility might be misused as a way for naming a subgraph for later
using it (as a subgraph, not as the function it performs). This is better done
with the named-copy mechanism. This allows selecting a group of icons
and giving it a name that will appear in the named-copies section in the
class palette. This name can be later dragged to a document for creating
another copy of the original group. This is better for the purpose of naming
a subgraph and having more copies of it because:
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• Named copies can be created from any group of icons.

• No need to abstract first and then explode.

• The operation is simple and quick — no tests are made.

A.4.5 Menu Commands

File Menu

File management operations:

New Create a new document. This will be done only after inquiring the
user for the new document type — selecting from the three packages
currently implemented.

Open Open a saved document. BOOMS will automatically identify the
document type and auto-load all named abstractions to the classes
palette.

Close Close the active document. Offer to save the document if it was
modified.

Close All Close all documents. Offer to save modified documents.

Save Save the current document. The saved information will include:

1. Document type.

2. Current DAG graph.

3. Named abstractions used

4. Window location, size and state.

5. Option settings.

If the document is saved for the first time, then the user is prompted
for a new name.

Save As Save the document under a new name.

Save All Save all documents.

Exit Exit BOOMS (offer to save modified documents). This will only exit
the current BOOMS session, not the Lisp application.
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Edit Menu

When reading the documentation of clipboard operations, the reader should
note that BOOMS holds a separate clipboard for each document type.
Icon editing operations:

Cut Cut the selected icons to the BOOMS clipboard (for the current type).
The icons are copied with their internal links (links between members
of the selected icon list); external links are deleted.

Copy Copy the selected icons to the BOOMS clipboard (for the current
type).

Paste Paste the icons in the BOOMS clipboard (for the current type).

Delete Delete the selected icons.

Edit icon Edit the current icon using the applicable edit pane list (see below
for description of icon edit panes).

Grab style Grab (store) the current icon style. The icon style includes its
colors (background, foreground and highlight) and its font. The font is
effective only for text label nodes.

Apply Style Apply the current grabbed style to the selected icons. This
means that the selected node[s] will have the grabbed style. The font
style only applies only to text messages (only if the current grabbed
style was taken from a text node).

Select All Select all icons in this document.

Clear All Delete all icons in this document. Warn the user first!

Abstract Menu

Abstractions operations:

Create Icon Iconify the selected icons to a single abstraction. This creates
an unnamed abstraction — the selected icons are abstracted to an
abstraction icon that replace them. No class name is added in the icon
class palette.
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Explode Explode the selected abstraction[s] to the original components.
This applies both to named and to unnamed abstractions. The original
nodes will replace the abstraction nodes, scattered around its location.

Name Name the selected abstraction — add it in the icon-class palette and
menu. If multiple icons are selected, an abstraction is created first and
then it is named.

Unname Unname the selected abstraction[s] — the selected named abstrac-
tion icons are turned into unnamed abstractions.

Named Copy Create a named copy — copy the selected icons to a special
named register that appears on the icon-class palette. This can be later
used for pasting instances of this selection. The conventional “copy”
operation is identical to this operation when the name is “clipboard”.

Remove Current Remove the selected user-defined abstractions or user-
named-copy from the palette / menu. Removing a named-copy has no
effect other than removing the selected entry, but removing a named-
abstraction will unname all of its instances in all documents (this re-
quires user-confirmation).

Remove Unused Remove unused abstraction entries from the palette /
menu for this type. This will scan all named abstractions currently
available for the current document type, and remove the entries for the
unused abstractions. An abstraction is not used only if no document
(of the current type) contains an instance of it.

Remove Copies Remove all named copies from the palette / menu for this
type. Note that named-copies cannot be used in a document.

Classes Menu

This menu holds all icon-classes. It is equivalent to the icon-class palette.
Only the sub-menu corresponding to the current document type is available.

Windows Menu

This menu contains two sections, one for toggling panes (showing / hiding
them), and one for selecting a document window:
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Toggle Palette Toggle the icon classes palette.

Toggle Status-bar Toggle the BOOMS Status-bar.

Toggle Toolbar Toggle the BOOMS Toolbar.

Document Window Selections These entries, one for each active docu-
ment, select one them.

Options Menu

Various BOOMS options — these are general operations, and option setting
for the current document:

Same-Node-Same-Arg This determine BOOMS behavior when abstrac-
tion to be created has an argument appearing in several places. If this
is turned on, then each appearance will create another argument slot,
and if it is off, then each single node argument will produce a single
slot.

Dialog create Toggle creating an icons with a dialog — whenever an icon
is created, an edit dialog box immediately pops up for editing the new
icon. Pressing the “Cancel” button will undo the icon creation.

Grid Toggle grid placement for icons — if this is on, then icons can only be
placed on grid locations, making it easy to organize icons “neatly”.

Refresh Refresh the screen — redraw the whole screen in case of mess due
to bugs (this should not happen).

Stop Music Stop playing MIDI music — clear the current MIDI music
buffer.

Garbage Collect Run a Lisp garbage-collection.

Help Menus

General information menu, there is no “real help” here.

Welcome Hello from BOOMS. . .

About BOOMS This pops up a dialog box showing the contents of BOOMS.TXT,
containing the BOOMS abstract.
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Context Sensitive Menus

Context-sensitive menus are activated on a mouse right-click operation. There
are three context-menu types:

1. Right-clicking the application window (the pane available between doc-
ument windows) pops up a menu with these options:

• Create a new document.

• Open a document.

• Close all documents.

• Save all opened documents.

• The whole Windows menu is also available.

2. Right-clicking a document area (not inside an icon) pops up a menu
with these options:

• Save this document.

• Close this document.

• The whole Classes menu is also available.

3. Right-clicking an icon pops its own specialized menu, this contain:

• Evaluate, which is equivalent to double-clicking the icon.

• Edit, which pops up the edit-icon dialog.

• More options are available, according to the specific node type.
These options are part of the document-type package.

A.4.6 Keyboard / Toolbar Shortcuts

Accelerator keys and toolbar buttons are a standard GUI feature. The Win-
dows operating system has a lot of conventional accelerator key bindings,
many of them are used in BOOMS.

A list of all accelerator keys is given below. “C-” means holding the
Control key, “S-” means holding he Shift key and “A-” is the Alt key.
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Key Operation Key Operation

C-N New Document C-O Open Document
C-W Close Document C-S Save Document
C-F4
A-X Exit BOOMS C-X Cut

S-Del
C-C Copy C-V Paste
C-Ins S-Ins
Del Delete A-Enter Edit Node
C-Del
C-G Grab Style C-P Apply Style
C-A Select All C-I Create Abs.
C-E Explode Abs. C-M Name Abs.
C-S-C Named Copy F10 Palette Togg.
F11 Status-bar Togg. F12 Toolbar Togg.
S-C-D Dialog Create Togg. S-C-G Grid Togg.
C-R Refresh Screen M-F4 Close Lisp
Arrows Move Icons S-Arrows Fast Icons
C-Arrows Scroll Window C-S-Arrows Fast Scroll
C-Tab Next Document

The BOOMS toolbar provides many useful shortcuts — just point the
mouse to a button and a message describing its operation will appear near
it, and at the status-bar. The is one operation that is available only from
the toolbar, volume setting (the right track-bar).

A.4.7 Node Edit Panes

A useful feature that is standard in Windows is attribute panes. These exist
for many objects and can be popped by choosing properties from a menu
(usually the right-button menu associated with the object) or by pressing
“Alt+Enter”. A property dialog box is mostly made using a tab control to
switch different pages, each is used for some different attribute changing.

In BOOMS, the node edit dialog contain property edit panes. This feature
is fully customizable by package implementations — each node can have its
own set of property pages.

Here is the list of current edit pages and their usage:
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node This is the most important edit page. It allows editing of node ar-
guments — linking node arguments, or disconnecting them. This also
provides the only possible way for filling an argument socket with a
Lisp value.

This page is available to all nodes (not to leaves).

leaf This page is available to all leaf nodes. It controls the leaf value.

colors This page is available to all nodes. It is used to determine the colors
used for nodes. The colors are the foreground and background colors
used to draw icons with, and the selection highlight background color.

text This page is only for text message nodes. It controls the text message
displayed, its font and its color.

notated This page is for editing notated triplets naming pitch or interval
values in the music package.

sound This page is for editing a sound node in the music package.

factor This page is for editing music package factor values (real number
between 0 and 1).

g-color This is used in the GCalc package by primitive cubes — selecting
the cube color. Note that it is available to the general cube, constant-
color cubes cannot change their colors.

arith-name This is a general page for all nodes classes in the arithmetic
package. These nodes have a “name” that can be modified using this
page. It is not very useful, but it is for demonstration purpose.

operator The arithmetic package defines general operator nodes, that can
have one of several Lisp functions available. This page is used to change
this operator.
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Appendix B

BOOMS Programmers
Reference

These appendix is not complete yet, currently there is only the files docu-
mentations.

B.1 Document Type and Icon Class Addi-

tions

As written in this work many times, BOOMS is designed to make additions
of editing domain packages very easy. The arithmetic package implementa-
tion file, ARITH.LSP, is provided mainly as a template for learning how new
packages should be implemented. See the detailed documentation for this
file.

B.2 Lisp Code Explanations

B.2.1 The Files

This is a list of BOOMS files and a brief description of each. The next
sections contain full explanations for the important files — the files marked
with a ⋆.

HEADER This is a simple header file for the whole system, providing the logo
and date on the self-extractor file and on after the system is loaded.
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FILELIST This is the list of all files, used only for creating the compressed
file.

ARJBOOMS.BAT This is a small batch-file that creates the compressed file.

BOOMS.TXT This is the BOOMS short abstract that is displayed when using
the “About Booms” menu command.

BOOMS.TEX The source of this work.

B-FILES.LSP ⋆ This defines the load and compile mechanisms. It provides
‘makefile’ mechanisms for reload / recompile when needed. The need
for such a file arise as this Lisp version does not contain the defsystem
facility.

LOAD.LSP When this file is loaded, the whole system is loaded — if this was
already done then only modified files will be reloaded.

COMPILE.LSP When this file is loaded, the whole system is recompiled. Only
new files will be compiled

RUN.LSP When this file is loaded, the whole BOOMS system is loaded and
the application is launched.

PACKAGES.LSP ⋆ Definitions for the packages, symbols imports and symbols
exports.

NETWORK.LSP ⋆ This is the main core of BOOMS. It defines the basic ‘Node’
class that compose an operational hierarchy DAG.

BOOMSAPP.LSP ⋆ The main Windows application definitions.

BOOMSDOC.LSP ⋆ The ‘Document’ class definition. When speaking of the
‘Document-View’ approach, this file is actually the hierarchical view
implementation and NETWORK.LSPis the real document.

ICONS.LSP ⋆ Definitions for the ‘Icon’ class which is used to add GUI meth-
ods for nodes and create the ‘Iconic-Node’ class.

LEAVES.LSP ⋆ This defines GUI leaf nodes.

ABSTRACT.LSP ⋆ Definitions for visual hierarchical abstractions. The actual
abstraction mechanism is in NETWORK.LSP.
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SHARED-I.LSP ⋆ The shared icon classes are defined in this file.

CLASSPAL.LSP ⋆ The definitions for the icon classes palette, and the mech-
anism for run-time addition of classes.

ICONEDIT.LSP ⋆ This defines the icon edit dialog mechanism, supporting
customizable property edit pages.

COLEDIT.LSP ⋆ Definitions for the icon color edit pane.

SAVELOAD.LSP ⋆ Saving and loading BOOMS documents.

MUSIC.LSP ⋆ The music sample package.

ARITH.LSP ⋆ The arithmetic sample package.

GCALC.LSP ⋆ The implementation of the GCalc double view editor.

MISC.LSP ⋆ Miscellaneous useful definitions.

GR-MISC.LSP ⋆ Miscellaneous GUI definitions, like the color-box widget.

GEOMETRY.LSP ⋆ Geometrical efficient functions.

CONSTANT.LSP ⋆ All constants are defined in this file. This can be modified
to make the application look different.

DIALOGS.LSP ⋆ Several common dialogs that are used in BOOMS are defined
here.

BITMAPS.LSP ⋆ Bitmaps for the toolbar buttons.

MIDI-LIB.LSP ⋆ This is the Lisp interface to the MIDI driver.

MIDI-LIB.DLL This is the MIDI driver DLL.

MIDI-LIB\MIDI-LIB.H The header file for the MIDI driver library.

MIDI-LIB\MIDI-LIB.C ⋆ C functions that implement the simple MIDI driver.

MIDI-LIB\MIDILIB.MAK MsDev automatically generated makefile.

MIDI-LIB\MIDILIB.MDP MsDev project file.
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ICONS.DLL Icons that used in BOOMS — for node icons and the window
icons.

LOGO.BMP The bitmap that pops when BOOMS is started.

INTRO.WAV The wave file for the logo pop-up.

NETWORK.EXA ⋆ This is an example of using the bare BOOMS core (in NETWORK.LSP)
with no Graphic User Interface.



Appendix C

The GCalc Mini System

C.1 Scheme Implementation

This system is written in Scheme, the implementation used is John Kozak’s1

Scheme version of SCM (by Aubrey Jaffer2). The system was written on top
of bitmap.scm which is a simple object-oriented extension to the Windows
Scheme that makes life simple (written by the author).

This should work for any true 32-bit Windows, but due to some uniden-
tified bug, it works only on some Windows 95 versions (on some, it works
but it does not actually draw anything).

C.2 FTPing, Extracting, Running

The GCalc system is at the same FTP site as BOOMS and getting the file is
done exactly like getting the BOOMS file, see Section A.2. The file name is
gcalc.exe, it is also an ARJ self-extractor that should be extracted at the
root of the “C” hard-disk (the whole system is about 5Mb).

Running the system is simple, no compiling is needed. The batch file
scm\gcalc.bat will run the system.

1jkozak@cix.compulink.co.uk
2jaffer@ai.mit.edu
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C.3 System Documentation

This documentation is from the Scheme file. It is only LATEX-ized, so it might
not follow the overall style of this work.

C.3.1 General Description

The basic description language is composed of simple basic objects and con-
structors that compose more objects. The word ‘object’ can mislead the
reader to think of a world of objects with identities. This is not the case —
and the word object should be read as values that are represented by GUI
objects.

• The basic objects are solid colored cubes. The exact colors have no
importance, a transparent cube is usually useful.

• All objects are cubes, and composing them using the constructors cre-
ates new objects which are also cubes.

• There are three constructors which correspond to the three axes: Left-
Right, Top-Down and Front-Back constructions. Each construction
takes two objects and produces another — the result is a cube split
into two halves containing the two original objects.

This world is perfect for the purpose of demonstrating lambda calculus
since it is on one hand very simple, and on the other hand graphic so a visual
interface is perfect here.

C.3.2 Functional World

In order to make this description language into a functional language we
need to implement functions and the rules for handling them. This is the
important step here. Two operations are added — lambda abstraction and
application (beta-reduction). Lambda abstraction means taking an expres-
sion and making one of its components a variable, and application means
taking a lambda abstraction’s body and replace each occurrence of the vari-
able by the application argument.
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C.3.3 Visualization

The visualization of basic objects and simple constructions of them is straight-
forward — we use a simple three dimensional cube that is the exact cube to
be drawn. The two other cases are a bit more complex.

• Basic cube: Simply draw this cube as a three dimensional object. Note
that this can also be the case for variables — we have to draw variable
components of expressions as the original object. See explanations
below.

• Construction: Draw the two parts of the construction in the two halves
defined by the constructor’s axis.

• Application: Note that an application does not appear too often, since
in most cases it is immediately evaluated (= reduced) — this follows
from the evaluation rules below. There are only two cases where an
application can ‘survive’ evaluation — one is the application of a basic
cube, which has no meaning except the application itself, so there’s
nothing to do but to leave this application in place, this can also occur
when applying such an application again on another object. The other
case can happen as a result of applying some function to an object — if
this function is of more than one variable (curried), then the result will
be the simple substitution result — no re-evaluation of the body. An
application object is visualized as the object being applied behind its
argument, in the same dimension size relation so it can’t be confused
with a front-back construction.

• Lambda Abstraction: An abstraction is simply shown as the body of
the abstraction with a little circle which represents the variable object.
A lambda abstraction inside another will be drawn as having two circled
variables (or more) one next to the other.

There is something that should be said here on variables — I can’t
use the substitution model without renaming, so the renaming I use
preserve the object that was turned into a variable. This way the
variable object can have a color, and the body is still visualized the
same. See an explanation below for why the substitution model must
be used.
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C.3.4 System Description

The system is very simple and follows exactly the principles above. There
are three windows — main window and two floating toolbars.

The main window provides the “work-space”, it has a cell for the ‘selected
object’ which is being worked on, and eight surrounding cells. Dragging
an object to the center cell just put that object instead of what was there
before. Dragging an object to the other eight cells performs an operation
— three cells create a construction, and three more construct an ‘opposite’
constructions (switching the first and second arguments). The application
cells constructs an application (one way or the opposite) that is immediately
being evaluated — all other applied objects are reduced.

The other two panes are the ‘Basics’ pane and the ‘Objects’ pane. The
Basics pane contains the basic objects that are used to build all compound
objects — all color cubes and the transparent cube. This pane cannot be
modified and it is created once on startup. An important role of this pane is
for constructing lambda abstractions — when a basic object is right clicked
the selected object will be abstracted using the basic color clicked as a vari-
able. The Objects pane is a store place to save objects that are needed in
the flow of work. Objects can be dragged to the objects pane and back.

Learning how to work with the system is easy — it is a simple, small tool.
There are few useful operations that are all specified below.

‘H’ Shows a help screen that describes these operations.

Left-mouse drag n’ drop This is for dragging objects to store locations
or to the selected cell. It is also used to drag objects to the action cells.

Right-mouse click Use this to zoom-in an object. All objects are actu-
ally drawn on the zoom pane, so viewing a zoomed object means no
additional processing. Another important use of a right click (speci-
fied above) is constructing a lambda abstraction — this happens when
clicking a basic object, which will be used as the variable for the new
abstraction. There is also a minor operation for a right button click —
on an action cell it will negate the action, for example on the ‘top’ cell
it’ll only leave the bottom part etc.

‘N’ This tends to be very useful for demonstration purposes — it will name
the selected object, so objects can have a descriptive name.
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‘D’ This toggles visual drawing on/off. Usually the objects are drawn visu-
ally, this helps sometimes understanding the visual object’s structure
but slows evaluation.

‘C’ This will clear the selected object. It is useful only for saving files —
loading will reevaluate all expressions so it can be useful to delete ob-
jects. The cleared cell is such that can be dragged to the Objects pane
so other cells can be cleared.

‘S’ This will save a file with all objects on the Objects pane and the selected
cell.

‘L’ This will load a saved file. Note that loading means reevaluating all
objects to draw them, so this operation might take a while — the
visual drawing can be turned off for speed.

‘R’ Restarting the system — clear the Objects pane and the selected cell.

‘Esc’ Quit.

C.3.5 Building Expressions

The system description above implies that objects are built step by step.
This means that the Objects pane must be used from time to time to store
intermediate result while building some complex objects. Another important
feature of the system is that all applications constructed are immediately
evaluated — reduced. One important result of this is that we can’t use the
extended application rules specified in the Grame paper — the rules that
assign functional meaning to basic objects.

These rules give all objects a functional meaning, for example, the red
cube can be used as the ‘reddish’ operator — the application of red on white
producing a pink cube. However, using these rules in this system means we
cannot construct abstractions that contains applications since these appli-
cations will be immediately reduced — when we’ll try to build something
like “(λ (red) (red white))”, we’ll get instead “(λ (red) pink)”. This is
because we must construct the red-white application, and we don’t have any
way of preventing this application from being evaluated. See the “functional
extensions” section below for further discussion.



108 APPENDIX C. THE GCALC MINI SYSTEM

C.3.6 The Evaluation Model

The first question that should be asked when implementing this system is
what model will be used for evaluating expressions. There are two immediate
options here — the substitution model and the environment model. When I
started working on the system I first tried using the environment model —
it looks as if it is much more efficient using it.

Using the environment model leads to many problems. The first prob-
lem is that our objects should have some kind of a visual representation for
objects. It is not a general problem, but it makes other problems get worse
since it makes visualization unnatural. Another problem is where should the
expressions be evaluated — an abstraction should produce a closure, and
this closure should contain some kind of an environment. This comes as a
problem considering the nature of this system, that is, the step-by-step con-
struction of objects. When we’ll want to construct a two variable lambda
abstraction like:

(λ (red) (λ (yellow) (left-right red yellow)))

we will have to first construct the inner expression — in the global environ-
ment, so when later the whole expression is applied, the outer variable will
not be bound in the inner one’s environment. A possible solution will be to
not evaluate lambda abstraction, but then the environment model advantage
is lost and the results will not be visualized properly.

The other option is a lot more reasonable here — the substitution model.
It is more natural, since this is the way we actually think of using lambda ab-
stractions — what we expect to see as a result of applying an abstraction like
“(λ (red) red)” on “green” is indeed “green” and not “red” in an environment
that binds it to “green”. This means that using the environment model will
just be an attempt to simulate substituting with the wrong model. There is
only one problem to solve here — avoiding variable capturing, this requires
renaming. But — names here are basic colored objects, and they should be
later visualized, so the original variable should be kept — so to represent a
variable I use a list that contains the variable name and some number. This
means that not all information is shown on the screen so confusing situations
can arise, like the result of applying

(λ (red) (λ (green) (left-right red green)))
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on green will be visualized like

(λ (green) (left-right green green))

but the first green of this construction is a green cube, and the second is a
green variable.

C.3.7 Reduction Rules

The last thing (and the most important one) to specify is the reduction rules
used. The syntax of the GCalc system is very simple, but there should be
an exact specification of the semantics — object evaluation rules.

This is quite simple, and it’s best demonstrated by the eval-exp1 func-
tion’s simplicity (just 17 lines). Note that this function is used only on an
application operation.

Note that these rules do specify the extended reduction rules that gives
a meaning to a construction of abstractions. This means that a function can
be composed of several parts, and applying such a function will be done by
applying each part on the corresponding argument’s part. See the rules for
exact definition of this.

The rules follow:

Simple expression Just return the expression. These expressions include
both basic objects and variable objects.

Construction expressions These expressions are simply evaluated recur-
sively, formally, the expression “(left-right x y)” will be evaluated to
“(left-right x′ y′)” when x′ and y′ are the evaluations of x and y respec-
tively.

A question can be asked here — is this really needed? Well, in most
cases it is not needed, we can simply return the expression as it is.
However, there are some rare occasions where the result of an applica-
tion returns an object which is a construction of applications, such as
applying this function on identity (for example, “(λ (green) green))”:

(λ (red) (left-right (red yellow) (red cyan)))

The result of the substitution would be:

(left-right ((λ (green) green) yellow) ((λ (green) green) yellow))
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But this should be further reduced to:

(left-right yellow cyan)

This can happen only as a result of an application, which implies a
possible optimization — use a simple version of eval-exp1 for all ex-
pressions, and make the application evaluation use another version that
will actually evaluate constructions. This can be simplified by not using
eval-exp1 for any expressions except applications. This is the cause
of the conditional call in eval-exp.

Lambda Abstraction expressions Abstractions are also returned as they
are, these expressions does not have to be evaluated — they are given
a variable when first constructed and only change when applied. Note
that this case can be considered the same as the construction expres-
sions above — we might want to compute the body of a function as
soon as this is possible, however, this is not wanted since the function
should be applied again sometimes to get a final result (not a function),
so it is not necessary to do the evaluation. This is actually a kind of a
normal-order evaluation — where function bodies are not evaluated ex-
cept when needed. This alone is not enough for normal order evaluation
since other rules should do a similar thing (see below).

Application Expressions This is where there is some job to be done. Note
that we wouldn’t have to use the evaluation function recursively unless,
during some applications, there will be more [nested] applications that
can be evaluated now. We now split into cases based on the evaluated
version of the object being applied:

Simple expressions There’s nothing we can do with these expres-
sions, so they are returned as they are (this would be the place to
add the extended evaluation rules).

Application expressions This is also treated as a simple expression
with nothing much to be done, since the expression is anyway
something that is not a simple (non-function) object.

These expressions could be further evaluated in case of a substi-
tution, and not doing this creates the normal order effect — see
the rule for reducing lambda abstractions above for further ex-
planations. For example, this enables us to enter this expression
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without getting into an infinite loop (however, evaluating its ap-
plication on a function will get us into the unavoidable loop):

(λ (red) (λ (blue) (red (blue blue)))
(λ (blue) (red (blue blue))))

Abstraction expressions Here we replace the application argument
for the abstraction variable in the abstraction body, and return
the evaluation of this substitution result (calling the evaluation
function recursively).

Construction expressions This is the special extension of a function
object. This extension gives functional meaning to constructions
of functions. What is being done here is applying a function part
on the corresponding argument’s part. For example, the result of
this application:

((left-right f1 f2) obj)

would be:

(left-right (f1 (left-part obj))(f2 (right-part obj)))

And now the formal generalization of this example should be ob-
vious now. This operation must be done only when the object is
constructed in the correct direction, therefore, it is used on the
result of a split function that will make the object a construct in
the correct size (splitting it if it is not already split in the correct
direction). Note that this evaluation rule is really powerful — it
enables the usage of “cubes of functions” on other cubes. There
is little meaning to cubes of abstractions with different “lambda
lengths” (objects like half functions and half basic colors), but
there is no error checking.

[Last remark — following this rule exactly explains why the Grame’s
“Spenger Sponge” won’t work as shown in their paper, see the last
section below.]

C.3.8 Functional Extensions

Now that we’ve seen the GCalc definition we can spend a thought on the
extensions. The one extension I have implemented is the construction of
functions, which is taken as a function that does something on one half and
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another on the other half. This is quite natural to understand, and very useful
when using the system for tricky demonstrations. This extension makes the
GCalc world more consistent in the sense that the new objects introduced
— abstraction and application, can be taken like all other objects, so it is
possible to use them with constructions.

The Grame paper specifies another extension — we have our new objects
behave like any other object by now, what we want is the other way — have
simple objects behave like functions when they are applied. This was not
done in Grame’s system as well as in this system for two main reasons:

1. Implementing this means there should be a mechanism that will specify
when we actually want to evaluate an expression. This is because
(as already said above) the expressions are built piece by piece from
the inside parts to the outside. This will prevent us from building
some expressions as specified above (“building expressions” section). A
solution for this will very easy to implement, simply have some event
like a key-press or double-click evaluate the selected object, but it’ll
make the system somewhat too complex to be fun — keeping in mind
that expressions should get evaluated sometime.

2. This meaning of basic objects as functions (red as a reddish function
etc.) is the most natural choice, however, it is not natural enough to
make a user mad about not having this feature.

So, to conclude, this extension was not implemented for the sake of keep-
ing this a “toy system” that will be fun to play with. This has caused the
evaluation function to look a bit messy (when trying to dig inside it and see
what do get evaluated and what not — see the above section), but the result
is worth this. A serious implementation would have this feature, but then
again — what serious things can be done with this cube world?

C.3.9 Formal Definition of GCalc

The formal definition of the GCalc system is given at Sections 4.3, 5.2.1 and
5.2.3.
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