
Quotation and Re
e
tion in Nuprl and S
hemeEli Barzilay(eli�
s.
ornell.edu)

Contents1 Goals & Outline 12 Introdu
tion 13 Re
e
tion in Programming Languages 44 (Pure) S
heme 64.1 Syntax . 64.2 Semanti
s (Values) . 74.3 Evaluation . 84.4 Quotations (Representations) 94.5 Re
e
tion . 105 Nuprl 115.1 Syntax . 115.2 Semanti
s (Values) . 125.3 Evaluation . 125.4 Quotations (Representations) 135.5 Re
e
tion . 156 Quotations 156.1 Quotation by Prepro
essing 166.2 A Quasi-Quotation Prepro
essor 186.3 Quotations and Quasi-quotation in S
heme 196.4 Suggested Quotations in Nuprl 217 Con
lusions 22Bibliography 24

1 Goals & OutlineRelationships between the
on
epts of proof systems and programming lan-guages are known. Some are well demonstrated in systems like Coq andNuprl, but other aspe
ts have not been fully implemented, su
h as re
e
tion.I believe that the true
ontext in whi
h su
h ideas are be
oming useful iswhen they are implemented, this \implementation as understanding" prin
i-ple is the reason some parts of the following text
ontain
ode pie
es. Thisshould take the form of a logi
al environment with re
e
tion me
hanisms,Nuprl is a good
hoi
e sin
e it is used for
onne
ting logi
 and programminglanguages. Therefore, the �rst step towards
reating su
h an implementationshould be taken: pinpointing what should be done, and how. This paper isan attempt to do this.An implementation of su
h a re
e
tive system merges two quite dif-ferent environments, ea
h with its own syntax, semanti
s, evaluation andquotations. The dis
ussion, therefore, starts with these attributes in generallanguages in Se
tion 2; programming languages are inspe
ted generally inSe
tion 3 and using a pure version of S
heme as a point of view due to thesimpli
ity of its re
e
tion me
hanisms in Se
tion 4; Nuprl is then dis
ussedas our goal logi
al environment in Se
tion 5; possible ways of implementinga quotation me
hanism are dis
ussed in Se
tion 6. Finally,
on
lusions arepresented in Se
tion 7, this is the most important part.2 Introdu
tionThe term \language" as we use it, is a formal way of
ommuni
ating
on
epts(obje
ts in some domain). The language itself
an
ome in several di�erentways su
h as vo
al sounds, written text, or text en
oded in
omputer �les.Whatever form a language takes, there are rules to spe
ify what
onstru
tsare valid | syntax, and how to asso
iate synta
ti

onstru
ts with the
on-
epts they represent | semanti
s (or meaning). For example the synta
ti

onstru
t of the Hebrew sound \shalosh", of the English letter sequen
e t-h-r-e-e, of the ASCII
hara
ter \3" in some
onventional programming language,and of the Nuprl term `natnumf3:ng()', all have the semanti
s of the num-ber three. The semanti
 rules mat
h synta
ti
 stru
tures in the language toobje
ts in some domain that this language denotes.Note that the pla
e where syntax ends and semanti
s begins is not �xed1

| we de
ide what syntax is valid, and then how to get its semanti
s, so�ltering out some
onstru
ts
an be done by de
laring them as synta
ti
allyin
orre
t or by making their semanti
s void. For example, we
an say thatthe expression `1+"a"' is synta
ti
ally in
orre
t, or that it is synta
ti
ally
orre
t but raises an error when evaluated or
ompiled, making it mean-ingless. This is
lear in a programming language implementation (de
idingwhat
omponent is responsible for dete
ting su
h errors | the evaluator orthe parser), but it is also a question in natural languages (one option is that\books sky snail" is synta
ti
ally in
orre
t be
ause it
ontains a sequen
eof three nouns, but another is that it is
orre
t be
ause all three words arespelled right).The term \re
e
tion" des
ribes three properties of a language, the �rsttwo are the fa
t that it allows syntax that denotes (by its semanti
s) its ownsynta
ti

onstru
ts, and that it
an talk about su
h
onstru
ts. In writtennatural language, the double quote symbol is used to spe
ify that a pie
eof text is not to be taken as representing
on
epts in the normal way butinstead, as representing the a
tual text itself. For example, the English word\water" stands for water, but the text \the English word `water' " uses thea
tual word \water" as a pie
e of syntax (and this senten
e just mentioneda pie
e of text that
ontained quotes). It is obvious that quotations are afundamental aspe
t of re
e
tion.So the �rst thing to have in the domain represented by a language that
an re
e
t itself is obje
ts that stand for syntax obje
t of the language itself,in other words, make the set of syntax
onstru
ts a subset of the representedvalues domain. Then, we must have some syntax that spe
i�es su
h quota-tions (the double quotes in the natural language
ase). When we have su
ha pie
e of syntax S1 that denotes a data stru
ture that represents a pie
e ofsyntax S0, we say that S1 is the quotation of S0.Many representations
an be used to spe
ify quotations. One obvious rep-resentation is taken from the informal usage of quotes and raw text in naturallanguage, however, this is an extremely poor representation for programminglanguages and logi
al systems sin
e it does not re
e
t the inherently re
ursivenature of synta
ti
al
onstru
ts1. A representation that is natural in the
on-text of formal languages is using the language
apabilities for de�ned types1Natural language syntax is stru
tured as well, but this stru
turing
an be ambiguoussometimes whi
h means that a re
ursive tree stru
ture
an be insuÆ
ient. This is not a
entral issue sin
e when su
h text is read, we automati
ally per
eive its `parsed' form.2

(re
ords in the
ase of programming languages, and tuples/sequen
es/de�nedtypes in the
ase of logi
al systems). Writinf su
h stru
tures expli
itly is alsoinsuÆ
ient sin
e it makes quotation
umbersome and ineÆ
ient, spe
i�
ally,repeatedly quoting some synta
ti
 obje
t makes the result grow exponen-tially. Other me
hanisms like a quotation
ontext, operator shifting2 and ageneral prepro
essing me
hanism
an all help solve this problem, these aredis
ussed in Se
tion 6.Most languages have an inherent evaluation pro
ess: we �rst get thesyntax, then see what it denotes (if it makes sense) using the semanti
s ofour language, and then we evaluate the result. This is a mental pro
ess thatstarts with a senten
e as a pie
e of syntax,
onverts it to a pie
e of semanti
information, and then forms a �nal mental pie
e of information in our mindusing some form of evaluation.Evaluation
an take several forms, for example | we
an identify andexpand de�nitions su
h as \Eli's wife" or pronouns like \you" and identifythem with other
on
epts su
h as \Regina Barzilay". We
an also use somelogi
al rules that are part of our language like eliminating double negations.More rules that we use to build su
h a `mental image'
an
ome from thepro
ess in whi
h this image is built, for example, adje
tives spe
ify propertiesof obje
ts, so they are order-independent (e.g., \the big blue
ar" and \theblue big
ar"). Finally, some information is taken from rules of the physi
alworld: we know that \mixing
our and eggs" is the same as \mixing eggsand
our", or that \a half-full glass" is the same as \a half-empty glass" |this, of
ourse,
an depend on the
ontext in whi
h it is used.There are also rules that handle quotations: this is interesting sin
e it isthe way natural language implements self-referen
e. Quotations
an be usedas any other obje
t, and they a
tually des
ribe their
ontents: so the �rstthing that makes this similar to the world of programming is that evaluationdoes not o

ur inside quotes. As an example, the previous paragraphs men-tioned several pie
es of text that would evaluate to the same mental image ifthey were unquoted. More rules involve referen
ing pie
es of text, as in \Thethird word of this senten
e", or dire
t evaluation using terms like `meaning'as in: \The word `word' stands for the
on
ept of a word."This leads us to the third property of a re
e
ted language: when wehave the above two, then it is possible to talk about the language within2This is the term we use for using an operator name to
reate a
onstru
tor thatgenerates quoted
ode that mentions the original operator.3

itself, but there is no real guarantee that the quoted language is identi
al thelanguage itself. Therefore, the third property is the
orresponden
e betweenthis representation and the language. This
an be regarded as the guard-dogthat makes sure represented obje
ts behave as we expe
t them to behave.The form of this
orresponden
e depends on the nature of the language:� in a natural language we want quoted text to be related to the a
tualmeaning of that text;� in a programming language we want evaluation of quoted sour
e
odeto behave the same as the same unquoted sour
e;� and in a logi
al system, we want a re
e
tion inferen
e rule that
antake a pie
e of quoted inferen
e and
on
ludes that the same fa
t istrue (in other words, provability of some represented term implies thatthe term itself is true).3 Re
e
tion in Programming LanguagesWhen talking about programming languages, we must be more pre
ise. Aprogramming language has some formal rules for
onstru
ting its syntax, anda fun
tion that evaluates su
h input, produ
ing some result. An operationalsemanti
s is de�ned by an evaluation pro
ess that turns syntax into values.The evaluator
an
ome in several forms su
h as an interpreter, or the
omposition of a
ompiler and ma
hine exe
ution. To re
e
t here meansto be able to write a program that
an itself generate pie
es of
ode andexe
ute them. Of
ourse, this is almost always possible, sin
e even a primitivelanguage like assembly
ode
an be used to write a text �le
ontaining someother text, use the operating system to invoke the assembler over this �le andexe
ute the result. This is, however, an extremely
rude way of implementingand using re
e
tion3 be
ause:1. It relies on features that are external to the language itself (the OS anda

essibility of a
ompiler in this
ase) whi
h is ineÆ
ient, and mightnot be available at run-time.3I have heard of some produ
tion engineers in Intel that used a similar te
hnique toimplement fun
tions that get a variable number of arguments using bat
h �les that wroteBasi
 programs. 4

2. Text �le generation, or text strings in general, is a low-level represen-tation that is diÆ
ult to manage and understand, mainly be
ause theyfail to represent the re
ursive nature of the syntax [3℄.What is mu
h preferred for this purpose are data stru
tures within the lan-guage that
an represent syntax, and, of
ourse, some me
hanism to spe
ifyquotations. Quotation of a pie
e of syntax S0 in this
ontext means: �ndinga pie
e of syntax S1 that evaluates to an obje
t whi
h is a representation ofS0. As mentioned earlier, the obvious way for representing syntax is to de�nere
ursive data stru
tures (assuming the language has some way to de�ne su
hstru
tures). This
an vary from
omplex representations like the Abstra
tSyntax Tree entries used by CamlP4 [4℄ to the simple lists of S
heme [6℄. Onething to note is that these data stru
tures de�ne the line between syntaxand representation | everything that
an be parsed to su
h stru
tures is
onsidered valid syntax.The next step on the way to re
e
tion is to have a user-available evaluatorin some reasonable way. One way of a
hieving this is to implement one |this has the advantage of requiring only user data stru
tures and Turing-
ompleteness. An obvious reason for reje
ting this is that it is basi
allyre-inventing the wheel that you already use, but an even stronger reason isthat this is not true re
e
tion in the sense that the implemented evaluatorhas no relation to the language used ex
ept for the programmer's wishfulthinking. The
onsequent of this is that \true" re
e
tion should be enabledusing the a
tual evaluation fun
tion whi
h exe
utes the program itself |this is by means of exposing it to the language. This guarantees the thirdproperty mentioned above.This
an be a
hieved using a �xed-point prin
iple: implement an evalua-tor that
an evaluate itself and use the result. The question here is whetherthis result is equivalent to the original evaluator4. A safer way for this isexposing the language's built-in evaluator to the language itself; by this, theinterfa
e barrier between the language and its interpreter is broken, but thisis the essen
e of re
e
tion: using a language to talk about itself. Exposinginternal parts of a substrate system su
h as a programming language is ageneral idea that
an be used to a
hieve greater
exibility as demonstrated4Some
ompilers su
h as OCaml are built by bootstrapping | making the
ompiler
ompile itself and iterate using the result, until the
ompiled result is identi
al to the
ompiler itself 5

in \The Art of the Metaobje
t Proto
ol" [7℄.4 (Pure) S
hemeIn the following two se
tions, the features of S
heme and Nuprl are
om-pared. Nuprl is taken as a representative logi
al environment that
ontainsan evaluator for a simple untyped term language. S
heme was
hosen as aprogramming language representative due to its simple design
ompared toother languages, espe
ially when it
omes to its re
e
tion
apabilities. Thedis
ussion is limited to a pure subset of S
heme, side e�e
ts and other irrel-evant
on
epts are ignored. The synta
ti
 issues are the same as in standardS
heme.4.1 SyntaxS
heme's syntax is essentially the same as that of other languages in theLisp family. It is extremely simple | everything is either an atom of somefundamental type (e.g., numbers, symbols and strings), or a list of obje
tsrepresented by some parenthesized whitespa
e-delimited sequen
e of obje
ts.This is a
tually the syntax for general S
heme obje
ts; the syntax for thelanguage is a subset of these expressions (for example, lists represent appli
a-tions, symbols represent variables, a list beginning with the symbol `lambda'represent fun
tions et
.). This is the �rst of several features that make re
e
-tion an integral part of the language. Quoting the S
heme Revised5 Report[6, p. 3℄:S
heme, like most diale
ts of Lisp, employs a fully parenthesizedpre�x notation for programs and (other) data; the grammar ofS
heme generates a sublanguage of the language used for data.An important
onsequen
e of this simple, uniform representationis the sus
eptibility of S
heme programs and data to uniformtreatment by other S
heme programs. For example, the `eval'pro
edure evaluates a S
heme program expressed as data.S
heme implementations have a reader fun
tion (`read') that parses input,and a printer fun
tion (`write') to display values. The philosophy behind6

this is that printed output always represents values equal (modulo pointerequality) to the result of feeding this output ba
k to the reader5.4.2 Semanti
s (Values)Values in S
heme are of two major kinds:� atomi
 values su
h as symbols, numbers and strings6,�
omposite values | lists holding an ordered sequen
e of values7.Lists are implemented using the `
ons' fun
tion that
onstru
ts a pairin memory (a
ons
ell) and the empty list (`'()'). Proper lists are eitherthe empty list or a pair of any value (the head of the list) and a proper list(its tail). Also, the `list' fun
tion is a
onvenient short
ut for
reating lists:`(
ons x (
ons y '())) = (list x y)'.The way atomi
 values are represented in S
heme syntax stru
tures raisesa subtle point: the S
heme interpreter sees all input through the glasses ofits reader fun
tion | so when S
heme sour
e
ode
ontains, for example, anumber, the reader will parse this and
reate the internal representation ofthat number, whi
h be
omes part of the [parsed℄ input sour
e; therefore, thesyntax for a number is itself. Other values, in
luding lists are also representedby themselves using the same me
hanism.It was said previously that to enable re
e
tion we must extend the domainof the language so it holds synta
ti
 stru
ture obje
ts | in S
heme this isdone by simply making obje
ts be the syntax that represent themselves, sothe domain of S
heme obje
ts is a superset of the domain of S
heme syntaxstru
tures. This point is unique to S
heme (and other Lisp diale
ts) dueto the
ombination of an interpreted environment with the way syntax isrepresented as values. More on this below.5This is not possible with all obje
ts, for example, fun
tions usually
annot be printed.Also note that feeding su
h output ba
k to the interpreter will get it re-evaluated unlessquoted.6Strings do have some internal stru
ture, but here we make a distin
tion between atomi
and
omposite obje
ts in the spe
i�
ation of S
heme programs so this is irrelevant.7Another thing that is ignored for this dis
ussion is usage of \dotted-lists".
7

4.3 EvaluationA S
heme interpreter is basi
ally a read-eval-print loop (\REPL"). The`read' and `print' parts are responsible for user intera
tion (the mappingbetween internal obje
ts and their textual representation) and `eval' is thea
tual S
heme evaluator fun
tion. Obviously, the evaluator is responsible forthe a
tual behavior of S
heme programs.`eval' is a [partial℄ fun
tion that takes some input sour
e
ode (an inter-nal representation built by `read') and produ
es the results that this
odeevaluates to, if any. It is an appli
ative-order evaluator that uses lexi
alenvironments.The fa
t that `eval' is just a fun
tion from S
heme values to S
hemevalues might sound
onfusing at �rst: how
an it distinguish values thatrepresent
ode from other values? The solution is simple | the input isalways taken as a pie
e of
ode representation and the output is always apie
e of data. For example, if the
ode `(list '+ 1 2)' is evaluated, thereturn value is a list holding the symbol `+', and the numbers `1' and `2', andthis is not evaluated further. In fa
t, if the `eval' fun
tion was not availableto the user, then there was no way that it would ever get any input syntaxother than user
ode | that is, it would never get applied on expressionsthat are results.So when a S
heme interpreter is used, entering a result string ba
k
anresult in an equal obje
t in the
ase of a non-symbol atomi
 value, but a dif-ferent value in
ase of a symbol or a list, in other words, S
heme's evaluationis not idempotent. For this reason, the DrS
heme pedagogi
 environment [5℄helps beginner-level students getting used to the language by \language level"settings, where the printer is modi�ed so values are printed in a way thatwill evaluate to an equal obje
t when re-entered | for example, the result ofevaluating `(list 1 2)' is the list holding one and two whi
h is printed as`(list 1 2)' or as `'(1 2)' by DrS
heme. There are other implementationsthat
hoose to display values in a similar way.What eval is doing on a given argument
an be summarized as follows:1. If the argument is a symbol, its binding in the
urrent lexi
al environ-ment is returned;2. If it is any other atomi
 value, then this value is returned;3. If it is a list and its �rst element is a spe
ial-form then the
orrespondingspe
ial evaluation rule is used; 8

4. If it is a list and its �rst element is a ma
ro symbol, then the ma
rois applied to the unevaluated arguments (sour
e
ode pie
es) and theresult is evaluated further;5. Otherwise, it is a list and its elements are evaluated (in some unspe
i�edorder), and the �rst is applied on the rest.Note that rule 2 is possible be
ause values are a
tually part of the inputsour
e representation.4.4 Quotations (Representations)The way S
heme syntax is de�ned leads to the fa
t that S
heme sour
e
odeis represented by data obje
ts that are part of the language and a

essibleto user-programs; the syntax of S
heme programs is that of these obje
ts.The same holds for other Lisp diale
ts. This, however, was not always the
ase: the Lisp 1.5 Programmers Manual [9℄ spe
i�es two ways of expressingprograms:S-expressions These are symboli
 expressions that are used for representingarbitrary data | this in
ludes Lisp sour
e represented in internal form.M-expressions The a
tual sour
e language that a Lisp programmer usesis named the \meta-language", sin
e it spe
i�es how S-expressions arepro
essed. M-expressions
an be represented in the form of S-expressionfor Lisp programs that use other Lisp programs as data.The distin
tion between the two was supposed to be
lear: programsin the form of M-expressions are what the
ompiler works with, while S-expressions are used for internal data | sometimes representing Lisp syntax.However, an evaluator fun
tion was written, leading to a Lisp interpreter forLisp programs that are written in S-expression form. This led to the repre-sentation of Lisp
ode using S-expressions being the dominant programminglanguage [8℄.It might be possible to use a more `standard' syntax in a smarter way thanthe one intended to be used in Lisp 1.5 | modify the reader and the writerfun
tions so both use the same syntax | essentially modifying the way listsare represented as text. However, this would require extra information su
has what symbols are in�x operators, their pre
eden
es et
. This is further
ompli
ated by the fa
t that we might want to print some obje
t as denoting9

data rather than
ode (for example, `(foo '(a b
) '(if of uf))'). It istherefore sensible to sti
k to the simple syntax.As said above, S
heme values represent themselves, and
omposite pie
esof syntax are represented by lists, so quotation be
omes trivial: to quote apie
e of input sour
e you simply write an expression that will have it as itsresult. The only missing pie
e to
omplete this pi
ture is the way symbols
anbe a result of a S
heme expression | the evaluator treats symbols as variablereferen
es, so a new spe
ial form named `quote' is added to the language,whi
h stops evaluation of a symbol: the result of evaluating `(quote a)' isthe symbol `a'.Now we know that:� to quote a symbol, we wrap it by a `quote' spe
ial form;� to quote any other atomi
 value, we simply use it (as dis
ussed above);� to quote a
omposite syntax (a list) | use the `list' fun
tion to
reatethe list.For example, the quotation of `(+ 1 2)' is `(list (quote +) 1 2)'.Finally, quoting is made easier by extending it so it stops evaluation ofany S
heme syntax obje
t in
luding lists. For example, using the single quote
hara
ter makes the quotation of the previous example as simple as `'(+ 12)'. This is generally dis
ussed in Se
tion 6.1 and the S
heme
ase is detailedin Se
tion 6.3.4.5 Re
e
tionLisp was designed for easy symboli

omputation, part of whi
h was evalu-ating Lisp
ode using Lisp
ode. S
heme, as a modern and elegant diale
tof Lisp, was designed to be as
lean and as simple as possible. The lessonlearned from Lisp led to making re
e
tion usage as simple as8:(eval '(+ 1 2))This simpli
ity
omes from two main fa
tors:8A
tually, this is not the way `eval' is de�ned in the S
heme Report. In fa
t, `eval'was introdu
ed only in the 5th Revised report in 1998.10

� The synta
ti
 stru
tures are part of the domain of S
heme values: non-symbol atoms represent themselves, quotes
an be used to get symbolsas values and lists
an be
onstru
ted by users.� The evaluation fun
tion (`eval') is available to user programs.There are few other supporting me
hanisms su
h as quasi-quotes, ma
ros et
that are dis
ussed below.As said in Se
tion 3, we
an get the evaluation fun
tion for our own lan-guage either by using a �xpoint or by exposing the a
tual evaluation fun
tionto the user level | breaking the abstra
tion barrier between the languageand its implementation. The se
ond way is what S
heme implementationsusually do: the `eval' fun
tion is the same as the one that the implementa-tion uses for evaluating
ode. This it is simpler, safer and more eÆ
ient. Itshould be noted that su
h implementation is not required by R5RS, the onlything that is required is the availability of an `eval' fun
tion that evaluatesS
heme expressions.The fa
t that syntax stru
tures are part of the domain of S
heme valuesis another su
h exposed internal me
hanism: the S
heme implementationand user programs share the same data stru
tures. This is required by thestandard so S
heme
ode
an always be used as data, for example, as inputto `eval'.This way of re
e
ting a system by exposing some of its internal fun
-tionality to its users is
alled pro
edural re
e
tion, see Smith [10℄ for moredetails.5 NuprlNuprl is a logi
al environment implementation that
onne
ts
onstru
tivelogi
 and programming. It is a
andidate system for an implementation ofre
e
tion so the
onne
tion between the logi
al meaning and the program-ming meaning of re
e
tion
an be made expli
it.5.1 SyntaxTerms are the fundamental obje
ts Nuprl manages: they are used for input,output and internal pro
essing. The information that terms represent
omesfrom their operator name, their tree stru
ture, and from atta
hed atomi
11

values (parameters). The stru
ture of a typi
al Nuprl term is a tree stru
tureof terms with no parameters and terms with parameters and no sub-termsas leaves.In short, terms and parameters provide a simple and uniform syntax forNuprl, mu
h like lists and atomi
 values in S
heme. There are, however,some di�eren
es as we will see.The a
tual user-intera
tion uses a stru
ture editor for entering terms anda display form me
hanism for visualizing terms. This is a rather te
hni
alpoint that makes life a little easier for users9: the internal representationis the same no matter how it is presented. The analogy for this in S
hemewould be a modi�
ation to the reader and printer fun
tions as dis
ussed inSe
tion 4.4.5.2 Semanti
s (Values)In Nuprl there are no \atomi
 values" as in S
heme | there are only terms |atta
hed parameters provide the a
tual
ontent of term values. Sin
e thereare no atomi
 values, there is an additional me
hanism to spe
ify what termsstand for [
anoni
al℄ values (named value terms) and what terms should beevaluated further to get a value. For example, numbers are representedin Nuprl by `natnum' terms with no subterms and with a parameter thatspe
i�es the a
tual value, for example: `natnumf3g()'. Value terms haveno spe
i�ed meaning | they stand for themselves. This is due to the fa
tthat evaluation in Nuprl has the form of normalizing terms, substitutions
an o

ur in any order.5.3 EvaluationTerms are used in Nuprl as the elementary data obje
ts, representing logi
alsenten
es. In addition, the system
ontains an evaluator
omponent thatuses terms as an untyped lambda-
al
ulus like language. Terms that arenot de
lared to be values, get redu
ed by the evaluator. These terms haveevaluation fragments whi
h are small fun
tions that de�ne redu
tions thatthe evaluator use to handle them. This evaluator is di�erent than standardprogramming language evaluators, it is a normalizing pro
ess: a term
an beredu
ed until it is a value term.9This is espe
ially ne
essary sin
e many Nuprl users are mathemati
ians.12

Another di�eren
e between evaluation in S
heme and in Nuprl is thatbe
ause a term and its normalized form are always equal, then the evaluation
an be lazy where S
heme is eager. Moreover, there is another importantpoint about the way Nuprl treats terms that should be made
lear at thispoint: there is no distin
tion between two terms if one
an be redu
ed tothe other (or both to a the same). The evaluator gets terms as input, andredu
es subterms lazily as ne
essary | this makes it a fun
tion that mapsterms to terms. This is similar to S
heme, but the fundamental di�eren
e isthat terms that
an be redu
ed to the same (alpha-equal) term are
onsideredindistinguishable, in other words, this eval fun
tion is idempotent: there isno di�eren
e between eval(x) and eval(eval(x)). If evaluation in S
heme wasde�ned similarly, then evaluating the expression `(
ar (list (list '+ 12) 1))' would yield `3' be
ause `list'
reates an a
tual expression. The3Lisp language [10℄ fa
es the same problem and the solution was to make ituse normalization as well.Nuprl's approa
h allows a lot of freedom in the sense that di�erent eval-uation te
hniques
an be intermixed, it even allows a more
omplex systemthat spe
i�es what parts should be redu
ed. In other words | the S
hemeevaluator knows that anything that the evaluator gets is a syntax value andanything it returns is a simple value, while the Nuprl evaluator always returnsa term and these terms are
lassi�ed to data values and redu
ible terms: thisallows it to do an in
omplete job, deferring unne
essary redu
tions.5.4 Quotations (Representations)The restri
tion implied by the evaluation pro
ess implies that exposing theterm
onstru
tor in Nuprl so terms represent themselves is impossible: asdes
ribed above, Nuprl
an redu
e arbitrary subparts of some expression,whi
h means that terms
annot represent themselves sin
e there is no wayto spe
ify that they should be treated as values. There are several possibleways for making syntax representation possible:1. Represent terms using a simple re
ursive type de�nition that will be
omposed of a pair of lists, one representing parameters and the otherrepresenting bound subterms. This is the simple/naive approa
h.2. Change the term stru
ture so that there will be an additional `
ag'parameter in terms, spe
ifying whether a term is quoted or not, it13

should be possible to a

umulate these
ags, whi
h will denote \quote-ness" levels. These
ags only indi
ate the term as quoted, not itssubterms: we shift the meaning of the operator with this
ag fromwhat it denotes to a representation of its own syntax; we name thisoperator shifting. This is an implementation
hange.3. For every possible term, make a
orresponding new value term that willrepresent it, this should be done
arefully so all terms are representable,in
luding these terms as well.4. Modify the evaluator so it is more similar to the S
heme evaluator.This will, naturally, redu
e its
exibility. Note that this is a suggestionon how to design the way evaluation will happen, it
an still be a lazyevaluator.5. Create a new term named `quote' that has a single sub-term, and mod-ify the evaluator to treat these terms as data and disallow redu
tions inthem. This violates the prin
iple of uniform management of terms bymaking substitution
ontext-sensitive (free variables in quoted termsshould not be repla
ed). This has a drasti
 e�e
t on the system sin
eit
hanges the way equality behaves.6. Do the same, but have no subterms, instead keep the quoted termas a parameter value. This means that no implementation
hange isneeded. However, the stru
ture of the quoted term is not easily a

es-sible, spe
i�
ally, we
annot have subterms that des
ribe parts of thequoted term.The standard approa
h in Nuprl, whi
h is the one taken in [2℄ and in [1℄,is the �rst one above. A suggested improvement is the se
ond one whi
his temporarily ha
ked similar to the third one: for every term we de
larea mat
hing value term that is used to represent the syntax of that term,But eventually we want this to be done automati
ally by su
h quote
agsand sele
tor fun
tions that will be able to pull information out of quotedterms (see Se
tion 6.4). There is a `rep' fun
tion from terms to terms, thatprodu
es the
anoni
al representation of a term; the S
heme equivalent ofthis fun
tion, when the simple approa
h is used, would roughly look like this:(define (rep expr)(if (list? expr) 14

(
ons 'list (map reps expr))(list 'quote expr)))but this is, of
ourse, simpler using the extension that allows quoting everyobje
t, spe
ifying quoted
ontexts:(define (rep expr)(list 'quote expr))Another fun
tion, `unrep' is the opposite operation, whi
h in S
heme (giventhe above fun
tion de�nition) is simply `eval'. As with any other Nuprlterm, terms are the same as ones that are the result of their evaluation, so,for example, the `unrep' fun
tion must be partial sin
e some terms representin�nite
omputations. Note that the only way to speak about these fun
tionsis to lift the dis
ussion to the quoted level: for example, it is impossible towrite the above S
heme fun
tion so it will get a pie
e of unquoted syntaxsin
e that syntax will get evaluated (but it is possible to write it as a ma
ro).5.5 Re
e
tionThe above quotation me
hanism allows re
e
tion to be implemented. Thishowever was never done in pra
ti
e: a theoreti
al dis
ussion appeared in[2℄, and an attempt to get a pra
ti
al implementation was done in [1℄. Thispaper is an attempt to be the �rst step on the road to a pra
ti
al workingre
e
tion implemented in Nuprl of a partial subset of the system exposedinternals, unlike the ambitious attempt of [1℄ for the re
e
tion of the fullNuprl in terms of itself. The plan is to use operator shifting to exposea representation of term stru
tures, together with internal fun
tionality tomanipulate these representation.6 QuotationsSo far, we have examined S
heme's re
e
tion
apabilities and
ompared themto Nuprl's. The problem with what was done in Nuprl is that it never rea
heda stage of pra
ti
al usage. To get to su
h a working system in a new way, somevariation is needed: here we inspe
t possibilities for quotation me
hanisms,from a general point of view and possible implementations.15

6.1 Quotation by Prepro
essingNow that we know how to use quotations, we en
ounter another problem:using quoted data stru
tures in the obvious way is very
umbersome. Thisis true even for the simple list stru
tures in S
heme | a simple expressionsu
h as:(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))is quoted (using the quote
hara
ter short
ut) as:(list 'if (list '<= 'n 1) 'n(list '+ (list 'fib (list '- 'n 1)))(list '+ (list 'fib (list '- 'n 2))))As said in Se
tion 2, some quote notations are mu
h simpler to use, forexample, if we would have
hosen to represent S
heme
ode as strings, thenthe quoted expression be
omes as simple as:"(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))"but, as already mentioned, strings are a very poor tool for syntax repre-sentation for la
k of re
ursive stru
ture. The reason that makes strings apoor representation is exa
tly what makes `good' representations
umber-some: we want the re
ursive nature of the syntax to be represented in ourdata stru
ture, so we always get these
onstru
tors stu
k in the middle ofthe represented text su
h as the extra `quote's and `list's in the exampleabove. A property of a quotation me
hanism that is easy to use is that orig-inal syntax appears literally in the expression that is its quotation, su
h asthe string example (as dis
ussed in Smullyan [11, Chapter 1℄).The way S
heme solves this problem is by introdu
ing the `quote' spe
ialform. This allows us to write:(quote (if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2)))))or even simpler:'(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))When
onsidering this, it looks like a neat solution that requires a minoraddition to the language of the `quote' spe
ial form. However, we
an ob-serve that if we know how to translate a pie
e of syntax to another whi
h16

is its representation, then it is possible to write a sour
e
ode transforma-tion fun
tion that will do this for us so we are not even aware of the a
tualway these obje
ts are implemented. All we need is some form of quotationto be added to the input syntax, then it is easy to use su
h a transforma-tion fun
tion as a prepro
essor that will e�e
tively eliminate these
onstru
tsand substitute the a
tual full syntax
onstru
tors. If this fun
tion is appliedinside-out, we get it to handle multiple levels of quotations for free. Forexample, transforming this
ode:(f '(g '(+ 1 2)))starts at the internal quote, getting:(f '(g (make-expr '+ '1 '2)))then the se
ond quote is expanded and the �nal result is:(f (make-expr 'g (make-expr 'make-expr ''+ ''1 ''2)))This example is using a `make-expr' fun
tion that
onstru
ts expressions,whi
h avoids spe
ifying how atomi

onstants are en
oded. An a
tual
ode inS
heme is simpli�ed by the way quote
hara
ters are handled by the reader |all we handle are expressions with the symbol `quote' in their �rst position.An example for su
h a prepro
essing fun
tion is shown in Figure 1.(define (prepro
ess expr)(define (quotify expr)(
ond ((pair? expr) (
ons 'list (map quotify expr)))(else (list 'quote expr))))(
ond ((not (pair? expr)) expr)((eq? (
ar expr) 'quote)(quotify (prepro
ess (
adr expr))))(else (map prepro
ess expr))))Figure 1: Prepro
essing quotes in S
heme.This
ode is generi
: it
an be used in any language as a prepro
essor forthese simple quotes | it only relies on basi
 me
hanisms of the underlyinglanguage: being able to
onstru
t and de
onstru
t expressions that representsyntax, quoting symbols and managing lists in the S
heme
ase. A
tually,it is very di�erent from the way S
heme handles quotes whi
h is des
ribed17

below. This
ode
an also demonstrate the fa
t that writing naive expressionsto generate stru
ture that represent some syntax ends up in an exponentialblowup of expression sizes, see page 22 for an example.The CamlP4 pa
kage for OCaml is an example for this approa
h: itextends the input syntax with quotation marks, uses the parser on the string
ontents of these quotations and returns some transformation of the resultingabstra
t syntax tree obje
t; this is further
ompli
ated by typed abstra
tsyntax stru
tures | a quotation must spe
ify the type of syntax pie
e toparse.6.2 A Quasi-Quotation Prepro
essorQuoting pie
es of syntax using su
h a me
hanism as des
ribed above is very
onvenient, but we
an get still greater
onvenien
e. Quotes are used forspe
ifying �xed syntax pie
es, but when writing programs that manipulatesynta
ti
 stru
tures, it is desirable to mix quoted syntax obje
ts with `normal'
ode. For example, here is a fun
tion that manipulates input values that arequoted obje
ts themselves:(define (build-plus exp1 exp2)(list '+ exp1 exp2))Using simple quotations is
ertainly not enough sin
e the body of(define (build-plus exp1 exp2)'(+ exp1 exp2))quotes the two variables instead of using their values. The solution is to usequasi-quotation: this is taken exa
tly as the normal quotation above, ex
eptthat we allow another input
onstru
t for `unquoting' some parts of thequasi-quoted expression. For example, in S
heme, the above
ode be
omes:(define (build-plus exp1 exp2)`(+ ,exp1 ,exp2))where ``x' is a short
ut for `(quasiquote x)' and `,x' for `(unquote x)'.The way to prepro
ess a quasi-quoted
onstru
t is to turn it into anexpression that generates the templates | using `quote's and `list's in theS
heme
ase, but leaving unquoted values as they are. This means that ``(+,exp1 ,exp2)' is transformed into `(list '+ exp1 exp2)'. This is a
hieved18

(define (prepro
ess expr)(define (quotify expr)(
ond((and (pair? expr) (eq? (
ar expr) 'unquote)) (
adr expr))((pair? expr) (
ons 'list (map quotify expr)))(else (list 'quote expr))))(
ond ((not (pair? expr)) expr)((eq? (
ar expr) 'quasiquote)(quotify (prepro
ess (
adr expr))))(else (map prepro
ess expr))))Figure 2: Prepro
essing quasi quotes in S
heme.by the simple
ode in Figure 2, whi
h is the same as the
ode in Figure 1with a di�erent treatment for unquoted forms.This is also di�erent than the way S
heme handles `quasiquote's, but us-ing it gives the same
onvenien
e. As is the
ase with the
ode from Figure 1,this
ode is generi
 in that it requires minimal support from the underlyinglanguage, yet it provides the full
onvenien
e of using quasi-quotations astemplate spe
i�
ations. The surprising fa
t here is that the single additionto this
ode is enough to handle nested quasiquotes when it is wrapped in there
ursive `prepro
ess' fun
tion. Again, an example for this is the CamlP4quotation me
hanism: it extends the way that quotation strings are parsedby allowing `anti-quotation'
onstru
ts providing the same fun
tionality.The simpli
ity of using quasi-quotes with unquotes
omes from their nat-ural view as templates with holes to be �led. A very brief experien
e withthese is enough to get
onvin
ed by their usefulness. The [planned℄ way ofimplementing a quotation user-interfa
e in Nuprl with display forms and amodi�ed input method whi
h both use the represented terms with di�erent
olors is another form of a
hieving this goal: no matter how the quotationme
hanism a
tually is implemented, it is hidden behind an abstra
tion in-terfa
e. The input method will be very similar to the above
ode, using therepresentation of terms dis
ussed in Se
tion 5.4.6.3 Quotations and Quasi-quotation in S
hemeAs dis
ussed above, quotations and quasiquotations
an be handled in an\evaluator-transparent" way by using a prepro
essor. However, the way that19

S
heme implements these is more sophisti
ated.Sin
e the `quote' symbol is already treated as a spe
ial form that stopsevaluation, it is natural to extend its behavior to any expression. Using itwith atomi
 values is not useful sin
e they evaluate to themselves anyway, butwith lists it be
omes very handy. One thing to note here is that sin
e quotesare being treated as evaluation stoppers, then the quoted value appears asa literal
onstant in the
ode, so when semanti
s of referen
es are being
onsidered, it is a
tually di�erent than using the equivalent `list' form10.Quasiquotes are also implemented as spe
ial forms in S
heme. This isa subtle point that might not be obvious when reading the S
heme Report.First, it appears as a derived expression (one that
an be expressed usingprimitive syntax), se
ond, the way it spe
i�ed is, indeed, by translation toprimitive syntax11:If a
omma appears within the hqq-templatei, however, the ex-pression following the
omma is evaluated (\unquoted") and itsresult is inserted into the stru
ture instead of the
omma and theexpression.. . .The external syntax generated by write for [quasiquoted expres-sions℄ may vary between implementations.So, it looks like all usages of quasiquotes are eliminated when it is being readin | however it is possible to quote (or quasiquote) quasiquoted expressions,as the Report states:Quasiquote forms may be nested. Substitutions are made only forunquoted
omponents appearing at the same nesting level as theoutermost ba
kquote. The nesting level in
reases by one insideea
h su

essive quasiquotation, and de
reases by one inside ea
hunquotation.As demonstrated above, having quasiquotes as a spe
ial form in the lan-guage is not ne
essary | the way it is added to S
heme makes it moreeÆ
ient. An additional note about this feature in S
heme (or any other Lispdiale
t), whi
h is
lear by de
laring it as derived syntax, is that quasi-quotes
an be (and sometimes are) implemented as ma
ros that prepro
ess the
ode10This is the why the S
heme Report restri
ts su
h values as immutable values.11This dis
ussion ignores spli
ing. 20

so this essentially makes quasi-quotes work exa
tly as des
ribed above. Thisis also the reason why it is simpler to add quasiquotes to the language as ama
ro than eliminating any mention of it with a seperate prepro
essor.6.4 Suggested Quotations in NuprlWhen
onsidering a quotation me
hanism for re
e
tion in Nuprl, the wayS
heme de�nes them is one option. However, taking into a

ount the wayNuprl terms are evaluated, problems are en
ountered. The major problemis that su
h `quote's or `quasiquote's
onstru
ts (terms, in this
ase), workby
reating a
ontext that
hanges the meaning of expressions | the waythey evaluate. This is perfe
tly �ne for S
heme evaluation sin
e ma
rosget expanded before
ode is exe
uted, and even if treated as spe
ial forms,things are still okay, sin
e expressions
annot be evaluated at arbitrary pla
esbut only outside-in. In Nuprl, however, redu
tions
an o

ur at arbitrarypla
es, so having these quotations means that any substitution of a term must
onsider its
ontext. This is a
riti
al point in the system whi
h de�nes howequality behaves. Another point where things get unne
essarily
ompli
atedis the fa
t that terms that are subparts of other terms be
ome ambiguous:we need extra information to spe
ify whether they are quoted or not.The desired solution should have the property of using normal terms thatare not treated spe
ially by redu
tions and in general, modifying as littleas possible existing fun
tionality. All this should be a

omplished while theresult is still
onvenient enough to use. One su
h solution is presented inhttp://some-url-in-stuart's-home-page, whi
h is similar to option #2on page 13. The idea is that we add quote-tags to operators, and thesewill be treated as if they were de�ned as
anoni
al terms representing the
orresponding operators. Operators with these tags are
alled shifted opera-tors. On
e the Nuprl implementation is modi�ed, then the full representationusing the re
ursive type de�nition is not needed.This
an be demonstrated by a simple S
heme program: simulate shiftedoperators by appli
ation of quoted symbols. The result program is in Fig-ure 3. Using this
ode as a prepro
essor, the result of entering12:('+ ('* '1 '2) (* 1 2))is the list (+ (* 1 2) 2).12Note that this uses S
heme's spe
ial treatment of atomi
 values, the a
tual multipli-
ation should a
tually be quoti�ed. 21

(define (prepro
ess expr)(
ond ((and (pair? expr)(list? (
ar expr))(= (length (
ar expr)) 2)(eq? (
aar expr) 'quote))(prepro
ess (
ons 'list expr)))((list? expr) (map prepro
ess expr))(else expr)))Figure 3: Prepro
essing shifted operators in S
heme.This is, of
ourse, only a simulation that uses a
tual S
heme quotes for
reating syntax representations, but it is a good demonstration of this ideawhen it is implemented for Nuprl terms: `'+' is the shifted version of the `+'operator. One additional fa
t that
an be observed here is that this quotationstyle is also eÆ
ient: it prevents the exponential growth of expression sizeswhen it is quoti�ed multiple times. For example, if we use the prepro
essorof Figure 2, then quoting the simple expression (+ 1 2) three times yields:(list 'list(list 'quote 'list)(list 'list (list 'quote 'quote) (list 'quote '+))(list 'list (list 'quote 'quote) (list 'quote '1))(list 'list (list 'quote 'quote) (list 'quote '2)))whereas the new style of quotation using operator shifting yields a simple:('''+ '''1 '''2). Note also that the S
heme-style version of this will beeven simpler: '''(+ 1 2), but this is due to the simpli
ity of using
ontexts.As demonstrated, the
ontext of a logi
al system su
h as Nuprl makesS
heme-style quotes too
omplex and the above quotation me
hanism helpsin that. However,
ontextual quotes are still useful, as
an be seen by theirusage in informal language. This makes a good justi�
ation for providing aS
heme-like quasiquote me
hanism that will be translated by a prepro
essorto a
tual terms, similar to the idea of
olor-
oding quotations.7 Con
lusions� The provability/programming relation expresses itself as proofs thattalk about other proofs whi
h translate to programs that write pro-22

grams | this is
lose to ma
ros and staged evaluation/
ompilation.Working with ma
ros is an old subje
t that is very well-known andI believe that these te
hniques
an help formalizing provability up toa point where it
an be used in a
omputer-aided logi
 environmentsu
h as Nuprl. One example for a possible
ontribution of this mightbe an implementation of ta
ti
s as meta-proofs. An implementation istherefore needed to fully understand this relation.� A small, fully-re
e
ted implementation of a \Mini-PRL" system willbe a good starting point for playing with these ideas. This should bea very small system that
an do simple re�nements without the major
omplexity of Nuprl (su
h as ta
ti
s, display forms, intera
tive editor,sophisti
ated rewrites et
.). There is enough to learn from su
h anexperien
e, and it
an then be extended.� The simpli
ity of S
heme, whi
h is a
hieved by exposing the evaluationfun
tion of the language to its programs makes re
e
tion simple and`neat' | it is very small, very simple and very elegant. I believe thatsimilar te
hniques
an be useful in the Nuprl
ase as well.� The same also holds for the synta
ti
 data stru
tures: exposing theinternal stru
ture
onstru
tor (of terms in the Nuprl
ase) to the userlevel will make re
e
tion mu
h simpler. This
an be done as dis
ussedin Se
tion 6.� The bene�ts of having a re
e
tion me
hanism was shown as an ex-tremely useful tool in numerous domains, not only programming lan-guages, but other substrate systems as well | operating systems, ob-je
t systems, data bases et
. Nuprl is a substrate system of yet anotherkind, and as su
h, it will probably bene�t as well from a re
e
tionme
hanism. One su
h bene�t, getting ta
ti
s as results of re
e
tedproofs is mentioned above, but again: an implementation is ne
essaryto fully explore the possibilities.� Another question that needs an answer is whether it is possible toa
hieve re
e
tion by proving a Mini-PRL system inside itself and haveit be the extra
tion of this pro
ess. This will be the �rst logi
al systemwhi
h
an \verify itself" in some interesting sense. We know that theremust be some external me
hanism to make a re
e
tive system work, it23

will be interesting to lo
ate this minimal me
hanism when a re
e
tivelogi
al system is implemented and to
ontrast it with the programminglanguage world.Referen
es[1℄ W. Aitken. Metaprogramming in Nuprl Using Re
e
tion. PhD thesis,Computer S
ien
e Dept., Cornell University, Itha
a, NY, 1994.[2℄ S. F. Allen, R. L. Constable, D. J. Howe, and W. Aitken. The semanti
sof re
e
ted proof. In Pro
eedings of the Fifth Symposium on Logi
 inComputer S
ien
e, pages 95{197. IEEE, June 1990.[3℄ A. Bawden. Quasiquotation in lisp.[4℄ D. de Rauglaudre. CamlP4, April 2000.[5℄ F. Felleisen, F. R. B., F. M., and K. S. The drs
heme proje
t: Anoverview. SIGPLAN Noti
es: Fun
tional Programming Column, 1998.[6℄ R. Kelsey, C. W., J. Rees, et al. Revised5 report on the algorithmi
language s
heme. Journal of Higher Order and Symboli
 Computation,11(1):7{105, 1998.[7℄ G. Ki
zales, desRivieres J., and B. D. G. The Art of the Metaobje
tProto
ol. MIT Press, Cambridge, MA, 1991.[8℄ J. M
Carthy. History of lisp. February 1979.[9℄ J. M
Carthy et al. Lisp 1.5 Users Manual. MIT Press, Cambridge, MA,1962.[10℄ B. C. Smith. Re
e
tion and semanti
s in Lisp. Prin
iples of Program-ming Languages, pages 23{35, 1984.[11℄ R. M. Smullyan. Diagonalization and Self-Referen
e, volume 27 of Ox-ford Logi
 Guides. Oxford S
ien
es Publi
ation, Oxford, 1994.
24

